
xps4xps

Release V0.09

An "embedded" expert system

(a reasoning inference engine)

with rule sets for XPS/AES

http://xps4xps.sourceforge.net/

c©János Végh
(Janos_Vegh@users.sourceforge.net)
MTA ATOMKI, Debrecen, Hungary

December 23, 2003

xps4xps V0.09 2 December 23, 2003

CONTENTS

Contents

Table of contents 2

List of figures 4

List of tables 5

Copyright notice 6

Foreword 7

I User’s Guide 11

1 Base terms 12
1.1 Spectrum acquisistion and evaluation . 12

1.1.1 Acquisition . 12

1.1.2 Modeling . 12

1.2 XPS base terms . 13

1.2.1 Binding/kinetic energy . 13

1.2.2 Energy scale types . 13

1.2.3 Charging shift . 13

1.3 Objects . 13

1.4 Expert systems . 14

1.5 The 3-valued logic . 15

1.6 The inference engine . 16

1.7 The multi-platform feature . 16

2 Installing 18
2.1 How to install . 18

2.2 Packages . 18

2.2.1 Executable for 32-bit Windows . 18

2.2.2 Sources for 32-bit Windows . 19

2.2.3 Static binary for Linux . 19

2.2.4 Sources for Linux . 20

xps4xps V0.09 3 December 23, 2003

CONTENTS

2.2.5 Portable documentation . 20

2.3 What to install . 20

2.3.1 Developer . 20

2.3.2 Expert . 21

2.3.3 User . 21

2.4 The installed files . 21

3 Using rules 24
3.1 Coding a rule . 24

3.2 Reasoning . 26

3.3 Wrapper rules . 27

3.4 Combined rules . 27

3.4.1 Subrange-type rules . 27

3.4.2 Multiple condition rule . 28

3.5 Verifying rules . 28

3.6 Rules vs wizards . 29

4 Data acquisition 31

II Reference Guide 33

5 The base system 34
5.1 Extended boolean logic . 34

5.2 Generic rule . 34

5.3 Agents . 35

5.3.1 Database . 36

5.3.2 User . 36

5.4 Extensions for spectroscopy . 36

5.4.1 Spectrum . 36

5.4.2 Sample . 37

5.4.3 Background . 37

5.4.4 Peak . 37

6 General XPS rules 39
6.1 Generic XPS rule . 39

6.2 Global variables . 39

6.2.1 E4Background . 39

6.2.2 EnergyTolerance . 40

6.2.3 xpShortcutMode . 40

6.3 HasPeakInRangeBE . 40

6.4 HasPeakInRangeKE . 40

6.5 IsEnergyBE . 41

xps4xps V0.09 4 December 23, 2003

CONTENTS

6.6 IsEnergyKE . 41

6.7 IsEnergyAvailBE . 41

6.8 IsEnergyAvailKE . 42

6.9 IsPeakInRangeBE . 42

6.10IsPeakInRangeKE . 42

6.11IsRegionMeasuredBE . 43

6.12IsRegionMeasuredKE . 43

6.13IsXEnergyKnown . 44

7 Carbon contamination rules 45
7.1 DoMarkCarbon1sPeak . 45

7.2 DoesSampleContainCarbon . 45

7.3 HasCarbon1sPeak . 45

7.4 IsCarbon1sPeak . 46

7.5 IsCarbonAngleRatioBiggest . 46

7.6 IsCarbonAugerPresent . 46

7.7 IsCarbonContaminationConsensus . 46

7.8 IsCarbonEnergySeparationOK . 47

7.9 IsCarbonPostPeakSlopeBiggest . 47

7.10IsCarbonShirleyTailHigh . 47

7.11IsCarbonXPresent . 48

7.12IsRutheniumPresent . 48

8 The demo program 49
8.1 The main window . 50

8.2 Verifying rules . 50

8.2.1 The spectrum page . 52

8.2.2 The peak page . 53

8.2.3 The sample page . 54

8.3 The menu system . 55

8.3.1 Help menu . 55

8.3.1.1 About . 55

8.3.2 Options menu . 55

8.3.2.1 Settings . 55

8.3.2.1.1 Background length . 55

8.3.2.1.2 Energy tolerance . 55

8.3.2.1.3 Use Local Numeric mode 55

8.3.2.1.4 Shortcut mode . 56

8.3.2.1.5 Trial energy max . 56

8.3.2.1.6 Trial energy min . 56

8.3.3 Rule menu . 56

8.3.3.1 Carbon . 56

xps4xps V0.09 5 December 23, 2003

CONTENTS

8.3.3.1.1 DoMarkCarbon1sPeak 56

8.3.3.1.2 HasCarbon1sPeak . 56

8.3.3.1.3 IsCarbonAugerPresent 56

8.3.3.1.4 IsCarbonContaminationConsensus 57

8.3.3.1.5 IsCarbonXPresent . 57

8.3.3.1.6 IsRutheniumPresent 57

8.3.3.2 Sample . 57

8.3.3.2.1 Contains Carbon . 57

8.3.3.3 Truth table . 57

8.3.3.4 XPS . 57

8.3.3.4.1 HasPeakInRangeBE 57

8.3.3.4.2 HasPeakInRangeKE 57

8.3.3.4.3 IsEnergyAvailBE . 57

8.3.3.4.4 IsEnergyAvailKE . 57

8.3.3.4.5 IsRegionMeasuredBE 57

8.3.3.4.6 IsRegionMeasuredKE 58

8.3.4 Spectrum menu . 58

8.3.4.1 Add peak . 58

8.3.4.2 Add sample . 58

8.3.4.3 Exit . 58

8.3.4.4 Load . 58

8.3.5 Wizard menu . 58

8.3.5.1 Is Carbon present . 60

III Appendix 61

Bibliography 62

Index 64

xps4xps V0.09 6 December 23, 2003

LIST OF FIGURES

List of Figures

1.1 The Disney metaphor for objects . 14

1.2 Access levels to the "embedded expert system" 15

5.1 The spectrum objects interdependence . 37

8.1 The spectrum page of the demo application 50

8.2 The main page of the demo application . 51

8.3 The spectrum page of the demo application 52

8.4 The peak page of the demo application . 53

8.5 The sample page of the demo application . 54

8.6 The spectrum setup page of the carbon wizard 59

xps4xps V0.09 7 December 23, 2003

List of Tables

5.1 Truth table for the extended boolean NOT operation 34

5.2 Truth table for the extended boolean AND operation 35

5.3 Truth table for the extended boolean OR operation 35

5.4 Truth table for the extended boolean EQUALS operation 36

xps4xps V0.09 8 December 23, 2003

LIST OF TABLES

Copyright notice

This library is free software; you can redistribute it and/or modify it under the terms of

the GNU Library General Public Licence as published by the Free Software Foundation;

either version 2 of the Licence, or (at your option) any later version. This library is

distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even

the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU Library General Public Licence for more details.

You should have received a copy of the GNU Library General Public Licence along with

this software, usually in a file named COPYING.LIB. If not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for addi-

tional uses of the text contained in this release of the library as licenced under the

wxWindows Library Licence, applying either version 3 of the Licence, or (at your op-

tion) any later version of the Licence as published by the copyright holders of version

3 of the Licence document. (See http://wxwindows.sourceforge.net/licence3.txt)

2. The exception is that you may use, copy, link, modify and distribute under the user’s

own terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public

Licence or the GNU Library General Public Licence into a copy of this library, as this

licence permits, the exception does not apply to the code that you add in this way.

To avoid misleading anyone as to the status of such modified files, you must delete

this exception notice from such code and/or adjust the licensing conditions notice

accordingly.

4. If you write modifications of your own for this library, it is your choice whether

to permit this exception to apply to your modifications. If you do not wish that,

you must delete the exception notice from such code and/or adjust the licensing

conditions notice accordingly.

xps4xps V0.09 9 December 23, 2003

LIST OF TABLES

xps4xps V0.09 10 December 23, 2003

LIST OF TABLES

Foreword

” To write a good software is hard.
To write a good documentation is impossible.”

About this document

R
ecently, a renewed interest in deploying expert system in the data acquisition and

evaluation process in the electron spectroscopy raised. Different approaches might

be (and are!) taken to solve the problem. This document describes a particular one, an

"embedded" expert system, which implements a simple "inference engine" [VJ-02], the

most important and most mystic part of the expert systems. Based on this development,

and using some widely known rules from the field of X-Ray Photoelectron Spectroscopy,

the first published real-life rule set [CB-99] has been implemented as an example to

demonstrate the feasibility of the inference engine. Also, although it is not "rule" in the

sense above, some useful hints have been published [HH-92] to assist users in selecting

data acquisition parameters to reach some well-defined analytical precision. The proce-

dure has been implemented, too, and it can be used to demonstrate the principles and

even in the everyday planning practice. Hopefully, based on the collective expertise and

effort of the XPS community, more rule sets will be added soon.

The goal of developing the rule sets is to make this expert knowledge publicly avail-

able. Correspondingly, their implementation as well as source code of the base "inference

engine" shall be made public. In terms of computer programming, the resulting system

is intended to be part of the "open source" world [OS-01] and this is why it is hosted by

SourceForge [SF-02].

The present document describes the elements of this project in detail. Where possible,

it refers to the available publications. For legal reasons, those copyrighted materials

must not be reproduced here, so only their short summary and some supplements can

be contained here.

xps4xps V0.09 11 December 23, 2003

LIST OF TABLES

About xps4xps

T
he project described here comprises several components and is a result of collective

efforts. It is running continuously, and the different rules are in state of different

maturity. It is also possible that the inference engine and the rules will be implemented

in different computer languages. Right now, the inference engine and the first rule sets

are implemented in the C++ language. Both of these components are in "beta" stage (i.e.

they are in course of final approval, minor beutifying corrections are still possible).

The development needs some general programming constructs (like lists, strings, vec-

tors, etc.), as well as radioboxes, checkboxes, text input fields, etc. when testing/-

simulating the rules. Also, because the developed rules are to be built into data acquisi-

tion and evaluation applications, a program language feasible for making such applica-

tions has to be used. Because of this, the development has been started in a way using

a base package, which poses no copyright, royalty, etc. problems, supports (practically)

all popular platforms and its user community guarantees a long term usage. The multi-

platform C++ macro package wxWindows [WX-92] has been chosen as the development

platform.

How to use this manual

U
sers are strongly advised to study the User’s Guide first. It gives you an overview of

principles, techniques and terms, used in this project and throughout this manual.

Beside this, it makes you acquainted with handling the components of the project. The

different versions (releases) of the results of the project might differ in that some new

rules and demos/settings are added and (less frequently) some old rules are modified.

Also, some bugs might be fixed between versions and also sometimes optimization takes

place. So -especially after receiving a new release- it is worth to study this guide carefully.

The Reference Guide provides the most detailed information about the comprised com-

ponents of the project. Here you find also the default values/settings and the notes about

their usage. Most of the (non-trivial) operations, algorithms, as well as some parameter

values, are known from scientific publications. These sources are referred to as usual

with a [code], and under the correspondingly designated item in the Bibliography you

will find the description of the real source, typically in form of widely available books or

well-known journal articles or URLs.

The Programmer’s Guide is generated now by Doxygen [HD-97] and is provided in

HTML help file through the WEB site, as well as a Portable Document file, available as part

of the distribution. It provides the complete reference to the package for the programmers,

implementing further rules or building the existing ones into some software. A short but

concise description of the variables and functions is given also here. However, the essence

of the operation is documented in the corresponding place in the Reference Guide, where

the principles of the given solution are described in detail.

xps4xps V0.09 12 December 23, 2003

LIST OF TABLES

The available platforms

T
hanks to the used multi-platform package, the program can be (in principle) avail-

able on different computers (IBM-PC, a range of UNIX workstations, McIntosh, VAX,

etc.) under different operating systems (MS Win32, Linux, UNIX, VMS, Mac-OS) and is

being supported by different graphic packages (like GTK and Motif). The program on dif-

ferent platforms has a native "look and feel" and because of this, it behaves a little bit

differently (where it is important, the platform-specific difference is explicitly marked in

the text). Of course, the basic commands must work in any combination, but it would

not be wise not to use out the extra possibilities provided only on one of the platforms.

These extra possibilities are explicitly marked in the text.

The main developer platforms are MS Windows 2000 and Linux Debian 3.0, later

some other platforms might be added. (The availability of the program on other platforms

depends on the availability of development capacity for the author on that platforms.) The

screen shots are taken from Windows 2000 and Linux KDE screens.

Acknowledgements

The distributed Win32 and Linux binaries are compressed using UPX [OM-96]. The

Win32 installer packeg is prepared with Inno Setup [RJ-96]. The Linux binary package

uses the standard GNU tools. This document is prepared with MikTeX [CS-01] and edited

with TeXnicCenter [TC-99]. The Programmer’s Guide is made with Doxygen [HD-97].

Typographic notations

W
hen looking at the format of this document, you’ll occasionally notice things in

different fonts:

• Emphasized Style is used for general emphasis, book and paper titles, names of

sections of other manuals, object data types, notes from the author, etc.

• Typewriter is used for program and file names, rules, code fragments, etc.

• NOUN STYLE is used for command and rule names.

• boldface is used for object member names, function members, etc.

xps4xps V0.09 13 December 23, 2003

LIST OF TABLES

xps4xps V0.09 14 December 23, 2003

Part I

User’s Guide

xps4xps V0.09 15 December 23, 2003

Chapter 1

Base terms

T
he task addressed by this chapter is to explain the terms related to spectrum pro-

cessing and expert systems, at least as they are used in the present project. The

way as they are realized, is the subject of the next chapters.

1.1 Spectrum acquisistion and evaluation

E
valuating spectra (here) means to interpret measured data, to extract qualitative and

quantitative characteristic of the studied process.

1.1.1 Acquisition

S
pectrum acquisition means to measure some electron density function using some

electron spectrometer, point by point, and to produce the dataset (aka "electron spec-

trum"), the subject of the evaluation. Usually, some quantitative information shall be ex-

tracted from the data, so the measuring conditions shall be selected carefully according

to the goals to be reached. Some good advices can be extracted from [HH-92]. Part of the

suggested procedures is implemented for the future expert system, as detailed in section

4 on page 31.

1.1.2 Modeling

T
he modeling approach is necessary here because some rules refer to objects like

spectrum, peak, post-peak slope, etc. When evaluating spectra, the user has to

define such terms. It can be done in such a way that the data evaluation program

allows to create peaks, or creates them automatically, or simply the user marks some

regions of the spectrum where he locates the peak. In the demo application, these objects

are represented by some panels (and behind them, some peak object), where the peak

can be located via giving their energy and some other characteristics. Otherwise, the

modeling approach is not (yet) used; in later phases (especially when cooperating with

data evaluation software) it will be much more meaningful.

xps4xps V0.09 16 December 23, 2003

1.2 XPS base terms

1.2 XPS base terms

S
pectra of electrons excited by X-rays, have several particular features, the special

handling of which will be detailed in this section.

1.2.1 Binding/kinetic energy

E
nergy scale type is of central importance in evaluating XPS spectra. As it is well

known, in XPS/AES the energy values can be given either on binding or kinetic

energy scale. The two energy values are related by1

Eb = EX − Ek (1.1)

where EX is the energy of the excitation source, Ek is the kinetic energy, Eb is the binding

energy. Since usually some numeric values of of the component parameters are based

on the actual energy values, care shall be taken when changing the scale type or the

excitation energy.

1.2.2 Energy scale types

I
n some rule sets, see for example section 6.7 on page 41, both the kinetic and binding

energy values are requested. Because of this, the spectrum objects have to be able to

calculate their energies on both scales. To do so, the spectrum objects have to own their

energy type and excitation energy value. Upon creating them, these characteristics are

inherited from the parent spectrum, later they can be set independently.

The parent spectrum has the primary energy type and values; the spectrum compo-

nents derive their own energy type and values from it.

1.2.3 Charging shift

D
ue to the bombarding with X-rays, electrons escape from the sample so (depending

on the conductivity of the sample) the sample might have on a non-zero electro-

static potential. Several instrumental corrections can be (and usually are) applied to

compensate for this (apparent) energy shift, originating from this effect. Despite this, the

data evaluation procedures must be prepared for the fact that the electrons appear in the

spectrum at an energy, which does not exatly match their nominal energy. The charging

shift (here) in handled as follows.

1.3 Objects

F
or such a complex task like implementing an expert system, using object oriented

programming seems to be a necessity. For non-programmers, the term ’object’
1charging, etc. effects are not accounted for here

xps4xps V0.09 17 December 23, 2003

1 Base terms

sounds rather mystic. Probably the best way to understand the term is via the "Disney-

metaphor", as shown in Figure 1.1 on page 14. According to this, the ’cleaning objects’

-which usually comprise only data, like volume, length, weight, etc.- are personalized and

can also perform actions like fill, wipe, clean, etc. In this way how the action is carried

out remains hidden; the "wizard" asks for some action (what) and the "cleaning objects"

carry it out. The unnecessary details (how) are encapsulated into the objects, allowing for

a better overview of the task. New objects can be derived from an object: the new object

inherits all features and data from its ancestor and makes something more (what) or the

same thing in a different way (how). For a more detailed (and professionally correct)

discussion please refer to the numerous textbooks on object oriented programming, for

example [EB-99].

Figure 1.1: The Disney metaphor for objects

1.4 Expert systems

E
xpert systems – as any other specialized fields of the science – have their own ter-

minology. Most terms in this project are used in accordance with the generally

accepted meaning. The "embedded expert system" means here a limited input/output

ability (no native language input) package, which can be built into data acquisition and

evaluation software. The "reasoning inference engine" here means a software, which can

make decisions and as by-product, produces also a string, which explains why this par-

ticular decision was made.

xps4xps V0.09 18 December 23, 2003

1.5 The 3-valued logic

Figure 1.2: Access levels to the "embedded expert system"

1.5 The 3-valued logic

I
n the real life the replies of an expert person to a question can not only be a definite

"yes" or "no", but even "maybe yes" or "probably no". It might also happen that some

information is not available or uncertain or unknown, as well the expert person might say

"in lack of ... I cannot decide" or "I am not sure" or even "I do not know". These replies

can also be used as input information when formulating another question to an expert

person. Obviously, a "maybe yes" is not identical with "yes". One of the most critical

points of an expert system is the type of the output it can give and the type of the input

it can receive.

For operating the inference engine properly, one has to extend the generally used (two

valued) Boolean logic to multiple-valued logic. The idea is not strange at all: see fuzzy

logic [SRS98] and its applications. Obviously, it would be useless to extend the "yes/no

world" with all the mentioned reply types; rather introducing a third state ("unknown/not

xps4xps V0.09 19 December 23, 2003

1 Base terms

set/do not know") would suffice. Even this idea is not new: see [FA-66]. Also note that

even the ANSII standard for SQL database-handling language (ANSI SQL 89) applies a

triple-valued logic [DCJ89]. Introducing this extension enables the expert system to

simulate an expert person who is able to deal with incomplete/not fully reliable input

data and is able to give a reply other than a definite "yes" or "no". The extended boolean

logic is introduced on page 34 in section 5.1.

1.6 The inference engine

O
ne of the most mystic parts of the expert system is the ’inference engine’. For the

users of an expert system, it is a "black box", providing an extended boolean value,

which depends in a pre-defined way on some external conditions. In addition, it is able to

explain why a particular decision was made. In most of the known "expert system shells"

a special language is constructed to describe the rules. In the present system only one

special method is used which returns a rule, and, which is transparent for both the users

and the programmers. Otherwise, the language’s standard elements ("for" cycles, "if then

else" structures, etc.) are used to combine the rules, to calculate, etc.

There are many expert system, based on different "shells", in use. The one which we

need to build in the data handling software, shall be somewhat simplified, but still be able

to simulate a real domain expert. Since the field of the intended application needs some

well defined, community verified rules, it is an acceptable compromise not to provide

native language input and only use the inferencing ability of the system. In additition

to this, the system shall be able to explain its decisions, because (especially in the data

evaluation applications) the users might need it.

1.7 The multi-platform feature

E
xpert systems can exist on different software/hardware platforms, and also the de-

velopers can use different development tools. At this point one can make good use

of the excellent support provided by the multi-platform package wxWindows [WX-92],

because

• Once, the package needs some objects, like strings, lists, etc. This package pro-

vides the possibility to install the software at very different hardware and software

platforms.

• Second, the development (including rule verifying phase) can be carried out on very

different platforms, too.

• Third, the demo applications can be run on different platforms, allowing all uses to

study and improve the rules.

xps4xps V0.09 20 December 23, 2003

1.7 The multi-platform feature

A later goal of the project might be to "live without" that package, i.e. at least the base

+ rules shall be compilable without that package, i.e. some simple such structures (lists,

strings, etc.) shall be implemented independently and added to the package.

xps4xps V0.09 21 December 23, 2003

Chapter 2

Installing

I
nstallation is a very much platform-dependent and -typically- simple task. In this

case it is complicated by the fact that the released packets comprise components of

different nature. This chapter deals with the subject how to install the components, as

well as what to install and why to install the very different components.

2.1 How to install

I
n this early phase of development, only the 32-bit Windows and Linux operating sys-

tems are supported. On these platforms, the installation follows the standards on that

platform, see below. The provided material is grouped in different packages and as the

development proceeds, different releases are issued.

2.2 Packages

P
ackages here means that some (related) material is put together and made available

for the users in some grouping. Presently, the following packages are in use.

2.2.1 Executable for 32-bit Windows

W
indows versions with 32-bit word length (Win9x, NT 4, 2000, XP) share one single

distribution packet. The released packet is assembled by the Inno Setup installer

[RJ-96]. The installation procedure tends to be conventional: you can download the

actual release package from the download site [XPS02], in form of a .zip file. The file

name contains also the version number. Just unzip it to some temporary place and start

the resulting "setup.exe" program. Press button "NEXT" on the popup window if you want

really install it. Select the "home directory" you prefer (some subdirectories will be created

in that directory during the installation); even the directory name can be changed.

xps4xps V0.09 22 December 23, 2003

2.2 Packages

2.2.2 Sources for 32-bit Windows

A
lthough (thanks to the multi-platform feature of the package) all platforms share

the same source text, some peculiarities of Windows (special compiler project files,

icons, carriage control, install software, registry, etc) support to make a separate source

package.

Like the executable, the sources come in an installer package, too. Howevere, here the

selection needs more attention and knowledge: it offers several components to install.

Because of the multi-purpose nature of the distributed package, all these components

can be selected independently, there are no mandatory components and no dependence

checking. It is hoped that the descriptive text on the side of the installable components

will guide you through the install process.

The first checkbox controls the documentation files (change log, readme, licence,

etc). This is the only "mandatory" part of the package, so the corresponding check-

box is disabled (grayed out). The next few checkboxes control installing source files (for

developers/coders/experts). The next selection offers to install more source files, nec-

essary to build the demo program. For this goal, some makefiles/project control files

are provided for some selected SW platforms. Select what you like to install and press

"next" again. Also, select the start menu folder for the release and finish selecting with

checking the checkboxes if you want to create desktop icon and quick launch icon. Now

a summary page comes up, where you can make the final checking of your settings. This

is the last chance to abandon installing. You can decide to go "BACK" or to "INSTALL".

Choosing the latter case a progress dialog comes up and the install process finishes with

viewing the package’s "readme.txt" file. You might also be interested in the contents of the

"changes.txt" file, where the changes between releases are listed. Now, the distribution is

installed.

Note: The setup programs come with complete uninstall facility.
Shortcut, directories, registry items, etc. are completely and safely
removed. However, the "foreign" files (for example, results of com-
piling the contained sources) are to be removed by hand, preferably
before "uninstall". If removing after "uninstall", the containing directo-
ries shall also be removed by hand.

2.2.3 Static binary for Linux

L
inux users usually make their own binary on their own particular system. However,

this demo program needs further libraries, which are usually not present "out of the

box" in any distribution and their installation needs root permissions. Because of this, a

static binary is available here (which, however, still needs the correct version of the glibc
library). In case you wish to build your own binary, please use the tarball file, see below.

xps4xps V0.09 23 December 23, 2003

2 Installing

2.2.4 Sources for Linux

S
ources for generating your own binary are provided in form of tarball file and your

system manager can install it for you. These application sources depend on the

already mentioned base wxWindows [WX-92], so you have to install that package first.

After installing wxGTK (i.e. wxWindows), you can install the expert system demo as

./configure

make

Optionally, also (as root)

make install

ldconfig

To remove, also (as root)

make uninstall

ldconfig

2.2.5 Portable documentation

D
ocumentation is provided in form of plaform-independent PDF (Portable Document

Format) files. They are provided in different package but with the same release

number. In oder to avoid platform-dependency, the document files are not packed. Just

download them and store them together with the other material you use.

2.3 What to install

A
ll what you are interested in, in general. What you are interested in, it depends

on your goal with the package. Below you find a short explanation what files are

necessary if you are a member of the targeted groups. Anyhow, the documentation files

are the only mandatory part of the package: (and not only to install, but also to carefully

study it :-)). It is strongly hoped that the installation package "component names" give

enough hints to choose; see also the next section.

2.3.1 Developer

D
eveloper -here- means a software expert, who wants to implement new rules (fol-

lowing the advices of an XPS expert) or wants to implement the rules existing in the

package in his software product. For this goal at least the sources of the base system

and the selected package are necessary, maybe you can make a good use of the project

files for one of the popular development environments. The best choice is to make a full

install, but you may leave out the demo executable.

xps4xps V0.09 24 December 23, 2003

2.4 The installed files

2.3.2 Expert

E
xpert -here- means a person who provides his experiences in spectroscopy for for-

mulating domain-specific rules. Also a "knowledge engineer" is involved in this

process. These users definitely need the sources of the rule sets. They all use existing

functions and also create new ones. To develop and verify rules, they might make good

use of the demo project files, demo sources.

2.3.3 User

U
sers -here- means all spectrocopists, users of the end-product, produced by the

different manufacturers. They shall know the documentation, at least the reference

manual, and it is a very good experience to play with the demo. They usually do not need

the sources, project files, etc.

2.4 The installed files

B
elow it is assumed that you made a "Full install", i.e. all the files described here will

only be present in that case, otherwise you will see a subset only. The subdirectories

and their contents can be SW platform-dependent. The common description is given here;

the platform specific deviations/supplements are given in the subsections.

In the main directory (.)

• unins000.dat : uninstall database

• unins000.exe : the uninstaller excutable

The "./bin" subdirectory is for the executable file (demonstrating the usage of the

package)

• xps4c1s.exe : demo application for the C 1s rule set (for Win32)

The "./bin/lang" subdirectory is for the language localization files

In the "./bin/lang/hu" subdirectory is for the Hungarian language localization files

• xps4xps.po : demo-specific message translations, source

• xps4xps.mo : demo-specific message translation, compiled

• wxstd.po : base package message translations, source

• wxstd.mo : base package message translations, compiled

In the "./cpp" subdirectory

• xp4c1sVC.dsp : project file for building the C1s demo using MS Visual C 6

• xps4c1sVC.dsw : compiler settings for building the C1s demo using MS Visual C 6

xps4xps V0.09 25 December 23, 2003

2 Installing

• makefile.vc : a command-line make file for building the C1s demo with MS Visual C

6

The "./cpp/bitmaps" subdirectory contains

• icon4xps.xpm : the icon for building the xps4xps demo application

• wiz4xps.xpm : the "Carbon wizard" icon

The "./cpp/icon" subdirectory contains

• uninsxps.ico : the icon for uninstalling the application

The "./cpp/include" subdirectory contains the corresponding headers & co

• cwizard.h : header for the ’Carbon wizard’

• mainpage.h : just comments, for documenting with Doxygen

• menu_ids.h : menu item and other constants

• panelc1s.h : header for simulator pages for the C1s rule demo

• papers.h : just comments, for documenting with Doxygen

• setup.h : stuff for setting up conditions for the application

• truthtbl.html : a file for indluding by Doxygen

• utils.h : some utility routines

• version.h : contains demo (and release) version, text and numeric

• xbool.h : header & implementation of the 3-valued logic

• xprule.h : header for the generic rule implementation

• xps4c1s.h : header for main program of the C1s rule demo

• xps4c1s.rc : resource file for the main program of the C1s rule demo

• xps4xps.h : header for the general XPS-related objects

• xrcarbon.h : header for the carbon-contamination related rules

• xrxps.h : header for the general XPS-related rules

The "./cpp/src" subdirectory is for the C++ source files.

• cwizard.cpp : stuff for the ’Carbon wizard’

• panelc1s.cpp : simulator pages for the C1s rule demo

xps4xps V0.09 26 December 23, 2003

2.4 The installed files

• utils.cpp : some utility routines

• xprule.cpp : the generic rule implementation

• xps4c1s.cpp : main program of the C1s rule demo

• xps4xps.cpp : the general XPS-related objects are implemented here

• xrcarbon.cpp : the carbon-contamination related rules

• xrxps.cpp : the general XPS-related rules

The "./docs" subdirectory is for the documentation

• changes.txt : changes between releases

• copying.lib : the licence conditions of the package

• readme.txt : post-deadline & other infos

xps4xps V0.09 27 December 23, 2003

Chapter 3

Using rules

C
oding rules is a complex activity, involving experts, knowledge engineers and soft-

ware developers (as well as end users in the testing phase). Since no natural lan-

guage parser is involved, the correspondance between the expert-provided rules and the

programmer-written code must be assured during coding the rules. Thanks to the un-

derlying functionality (the inference engine), coding rules is quite close to the natural

language.

A general principle is that the expert system can provide answers to questions of type

’Is ...’, ’Has ...’. Correspondingly, the name of the rules is of form IsXXX or HasXXX, and

the class name of the implemented rule is xrIsXXX or xrHasXXX , where xr stands for

’eXpert Rule’.

3.1 Coding a rule

A
s an example, consider the rule resulting status if the binding energy is available.

In everyday language:

Binding energy is available

if

energy data are on binding energy scale

or

energy data are on kinetic energy scale

and

excitation energy is known

To describe the rule in a more formal way, a meta-language format is used. The name

of the rule will be ’IsEnergyAvailBE’ (see section 6.7 on page 41), the implemented class

will be ’xrIsEnergyAvailBE’. The method "Fire()" of the implemented class will contain the

rule and its value will be calculated by the method "CalculateValue()".
The general behaviour of a rule is independent of how many rules or external infor-

mation are involved: the only requirement is that the Fire() method shall result in an

xps4xps V0.09 28 December 23, 2003

3.1 Coding a rule

expression, using which the CalculateValue() method can calculate the value of the rule.

Presently the base system contains only pre-defined combination of rules (i.e. is hard-

wired), which corresponds to the expert-proven rules sets. However, for verifying the

rules, a run-time assembled rule handling could be easily constructed.

As you see in the code file "xrxps.h", the coding you have to do is to derive a new rule

from the generic XPS rule, give it a name (a logical one as class name and a string one

for using in reasoning), and to write the "Fire" method (see below). I.e. you have to write

the native language expression using the syntax of the used program language. In case

of C++ it looks like

xpRuleGeneric Fire(void)

{ return xrIsEnergyBE(InfoSource)

OR

(xrIsEnergyKE(InfoSource)

AND

xrIsXEnergyKnown(InfoSource)

) ;

}

As it is seen, it is quite straightforward to translate the everyday terminology to the

logical expression: just formulate the expression according to the syntax rules of the used

language. I. e. change the natural language words "AND" and "OR" to the correspond-

ing operators "&&" and "||" (if you like), respectively, and put the resulting expression

in the body of the member function "Fire()". In describing the rules, ’AND’, ’OR’ and

’NOT’ notation are used for the corresponding logical operations. Note that in the C++

implementation below, these notations can also be used for the corresponding logical

operations, just to make reading the generated code easier.

The brackets in this particular case are not really necessary (the precedence of the

operators would result in the same execution order without brackets, too; they just em-

phasize how exactly the expression is meant. The resulting rule is completely specified:

now (thanks to the underlying object’s functionality) the ’CalculateValue()’ member func-

tion can calculate the resulting value (whether one can use the binding energy) and the

method ’GetReasoning()’ can tell the reason to the user. Depending on the conditions

you set, you might receive results like

"Binding energy available" is TRUE because

"Energy-Data are BE" is TRUE

or

"Binding energy available" is TRUE because

("Energy-Data are KE" is TRUE

AND

"Exciting energy known" is TRUE)

xps4xps V0.09 29 December 23, 2003

3 Using rules

3.2 Reasoning

I
n the examples above, you cannot see any sign of reasoning in the implementation

of the method "Fire()". It is because a so called "default reasoning" is built in the

operators of the inference engine. During rule!evaluation, the inference engine combines

the name of the rule, its value, furthermore the name and value of the evaluated rules,

together with the connecting operations. This mechanism is called as "default reasoning".

Note that these reasonings are resulted in the default ’shortcut’ evaluation mode. In

the ’complete’ evaluation mode (if the menu item "OPTIONS|SETTINGS|SHORTCUT MODE"

is false), the first example sounds:

"Binding energy available" is TRUE because

("Energy-Data are BE" is TRUE

OR

("Energy-Data are KE" is FALSE

AND

"Exciting energy known" is UNKNOWN))

As it can be seen easily, the information content is identical but the output is verbose. In

shortcut mode it is simpler to understand the reasoning of the rule.

Of course, if you are not satisfied with the "default reasoning" method (otherwise: this

is used throughout the examples), you might write your own reasoning. In some cases,

it is even a must. For example, some rules (the so called wrapper rules, see below) the

rule involves only one single rule and no operation. Since the reasoning is built into

the operations, in such a case the custom reasoning is a must. It only means to give

the proper value to the member variable HistoryString. For example, the Fire() member

function of the rule "IsEnergyBE" looks like

{ xpSpectrumBase *xpS = (xpSpectrumBase *) InfoSource;

if(xpS) value = xpS->GetEnergyBE();

else value = Unknown;

if(xboolean::True == value)

HistoryString << "Energy data are on binding scale";

else if (xboolean::False == value)

HistoryString << "Energy data are NOT on binding scale";

else HistoryString << "No spectrum known";

return *this;

}

First the returned value is calculated, then -depending on that value- the reasoning text

is collected.

xps4xps V0.09 30 December 23, 2003

3.3 Wrapper rules

3.3 Wrapper rules

A
special case of using rules is when no operation is involved in calculating the value

of the rule. In this particular case an extra requirement is to make custom reason-

ing, because the default reasoning is built into the operators, as described in section 3.2

on 26.

These wrapper rules play an important role when simulating data evaluation and

acquisition software. In case of simulation, the wrapper rules usually return the value

of some internal flag. In case of real-life software, the returned value is calculated by

some algorithm, found in some database, signalized by an external device, etc. For the

rule, which uses the value returned by the wrapper rule, the real responder is not visible

at all, and changing the agent will be transparent for all rules using only wrapper rules.

A further advantage: a wrapper rule can be extended without any effect on the rules

involving that rule.

This special kind of rule is also ideal for using alternative information sources. For

example, the excitation energy is present is some spectrum data input formats, while in

some other cases the user has to be asked. Anyhow, the rule will return the correct reply,

and the calling rule shall not deal with the details.

The wrapper rules are also ideal to provide an alternative form for some logical func-

tions: the responder returns a 3-valued boolean value, without reasoning. Putting this

logical function into a wrapper rule, it will be possible to get the same reply, with the

corresponding resoning. Choosing the adequate alternative, one can make "invisible de-

cision" or "extended reasoning".

3.4 Combined rules

L
ogical operations are interpreted between rules, so the general purpose logical oper-

ators can be applied and logical expressions of any complexity can be constructed.

Since the operators between rules also result in a default reasoning, in most cases noth-

ing has to be done to get a usable reasoning. However, the possibility is open: as de-

scribed in section 3.2 on page 26, you can write your own reasoning also for combined

rules.

Although the rules involve expressions, resulting in a logical value, in the expressions

any kind of operation can be used. In this way different kinds of combined rules can be

constructed. Some special kinds of rules deserve mentioning here.

3.4.1 Subrange-type rules

I
n case of subrange-type rule it is possible to provide alternative rules for the same

goal, which rules will be valid under different conditions. The range of the individual

comprised rules is limited, but the resulting rule covers the full range, thanks to the

appropriate combination.

xps4xps V0.09 31 December 23, 2003

3 Using rules

xrIsInRange(ThresholdLow, ThresholdHigh) =

{ xrIsInSubRange1(ThresholdLow,Val1)

OR

.....

IsInSubRangeN(Val2,ThresholdHigh)

}

I.e. the rules can have a range of validity, and they "fire" only in case the conditions

lie in their particular range of validity, otherwise reply with "I do not know", thus allowing

other methods to decide. The rule then can be a simple "OR" of these functions.

3.4.2 Multiple condition rule

A
nother example is the ’Multiple condition’ rule, used by Castle [CB-99]. Here the

different conditions contribute different amounts of certainty to decide the value of

the rule. Finally the contributions are summed up. The rule results in False if the sum is

below the lower threshold value, True if above the upper threshold value, and Unknown

between them. Any other combination of rules can be easily assembled.

xrMultipleCondition(ThresholdLow, ThresholdHigh) =

{ Percent = 0; //

if(Condition1 is True) Percent = Percent +15;

........

if(ConditionN is True) Percent = Percent +12;

if(Percent<ThresholdLow)

return False;

else if(Percent>ThresholdHigh)

return True;

else return Unknown;

}

Note: "if True" must be here checked: "if not True" does not mean any
more false!

3.5 Verifying rules

V
erifying rules is of crucial importance for the whole expert system. In the case of

real-life acquisition and evaluation programs, the replies are based on some calcu-

lation or other measurement-data related operation. The behaviour of the expert system

(or more precisely, the incorrect value of a rule) can be the consequence of either the

incorrectly assembled rule, or providing incorrect status flags for the otherwise correct

rules. Because of this, it is of utmost importance to separate these two error sources and

simulating the replies from the real-life programs provides an excellent possibility to do

so.

xps4xps V0.09 32 December 23, 2003

3.6 Rules vs wizards

In the demo program, the external conditions and quantities are provided via Graphic

User Interface elements, completely controlled by the user. In this way the net effect

of the rule assembly can be verified: the user can set all possible combinations and

systematically vary all influencing factors, until the rule is completely tested. After this

phase, the simulated replies can be replaced with real-life ones and in this phase the

incorrect operating of the rules can only come due to the improper algorithm results, data

handling failures, etc. Some information can be coded into configuration files, database

values, etc., which can cause similar effects. This kind of errors can be successfully

eliminated via simulating their effect first. The demo application is a good example of

programming such a verifying setup.

3.6 Rules vs wizards

W
izards are also available for making logical conclusions and reasoning with the

present system. From the user’s point of view, wizards are the safe way to reach

some goal, without the need to know much details. From the programmer’s point of view,

the wizards are specialized and directed dialogs. As they are defined in the multi-platform

package wxWindows [WX-92]:

These dialogs are mostly familiar to Windows users and

are nothing else but a sequence of ’pages’ each of

them displayed inside a dialog which has the buttons

to pass to the next (and previous) pages. The wizards

are typically used to decompose a complex dialog into

several simple steps and are mainly useful to the

novice users, hence it is important to keep them as

simple as possible.

In the present demo, the wizards direct the user to establish the necessary condi-

tions, ask for the requested information pieces, and even force some way of usage via

disabling temporarily some operations, making some routes one-way only, etc. Some

control elements (used in the non-wizard mode) are duplicated on the wizard pages and

their operation also results in handling the other control element (on the notebook, i.e.

their ’alterego’).

The main difference between using wizards and using the rules directly is that the

wizard "knows" the necessary conditions as well as the ways as they can be established

and directs/forces the user to follow those steps, while using the rules directly the user

has to figure out from the reasoning he receives from the system, what is still missing;

i.e., using wizards is a ’hard-wired’ way of receiving a reply from the inference engine.

With wizard either all phases are passed (during which the needed replies/info pieces are

delivered and the logical parameters of the rules established) resulting in some conclusion

or the wizard is cancelled, delivering no reply at all. Without wizard, the user has to know

xps4xps V0.09 33 December 23, 2003

3 Using rules

(or can conclude from the reasoning of the conclusion of the unsuccessful trial) which

conditions are necessary for the rule to deliver the reply he wants. Anyhow, the logic

engine behind the scenes remains the same. Although it is probably correct that it is

easier for the very beginner to use a wizard, with growing familiarity with the rules and

conditions, the user will find much slower to reach the goal with wizards than using the

rules directly.

Also note some important differences. When using wizards, the user is the medium

who gives the replies needed by the expert system engine. Because of this, wizards have

some important disadvantages:

• user’s intelligence has to be involved in the decision process

• the process cannot be automated

• the user will be the only information source

• the result will contain some subjective elements (replies)

• allows ’improvisation’

On the other hand, it has also some advantages:

• no direct integration with the acquisition/evaluation software is necessary

• any kind of input information can be used

• allows ’improvisation’

The present demo provides both ways, saying that the more important point is the

rule and the logical interrelations between some parameters, and the way as they are

communicated to the inference engine is of secondary importance. The user might reach

its goal safely using the wizards (and even might learn the ’how’s and ’why’s), or might

use directly the different rules, using the success/failure method.

xps4xps V0.09 34 December 23, 2003

Chapter 4

Data acquisition

A
cquiring the measured data is an important, determining part of the analyst’s job.

The final goal is usually to extract some compositional information, so determining

the time to achieve the requested precision or to distribute the available measurement

time optimally is of vital importance.

Harrison and Hazell have published some good advices and hints[HH-92] to achieve

this goal. Although the paper contains some misprints, the conclusions are good and

helpful, so the formulas are implemented as they are published. As shown in Fig. 8.4 on

page 53, the peaks now have a parameter block called "Quantification". This block com-

prises quantification-related items. They are used as described in [HH-92]. (Presently,

the concentration uncertainty calculation is not yet implemented).

You can use it as a specialized spreadsheet: just change any of the the parameters

and the rest of the parameters will be updated correspondingly. (presently, no element

identification takes place, so you have to set all parameters manually, since no database

connection is yet implemented.) If you add several peaks, the concentration of the indi-

vidual elements (represented by the individual peaks) will be updated correspondingly.

xps4xps V0.09 35 December 23, 2003

4 Data acquisition

xps4xps V0.09 36 December 23, 2003

Part II

Reference Guide

xps4xps V0.09 37 December 23, 2003

Chapter 5

The base system

T
he base system is provided in form of a general base package, corresponding to the

lowest two levels of the expert system, see Figure 1.2 on page 15. This is a general

purpose package, with extensions to the spectroscopy, as described in section 5.4 on

page 36. The package is made XPS/AES domain specific as described in chapter 6 on

page 39.

5.1 Extended boolean logic

T
he new logic can be constructed as an extension to the Boolean logic: operators

(defined by their "truth table", see the tables below) can be defined and implemented.

As shown in tables, the two-valued Boolean logic is included as a subset of the newly

introduced three-valued logic: this subset of the truth tables is exactly equivalent with

the truth tables for the 2-valued logic. The "promotion" operation (mixing 3-valued and

2-valued logical variables) is also possible: operations between 2-valued and 3-valued

Boolean values can be interpreted; their result is as shown in tables 5.1-5.4. As you see,

in the tables the logical operators are used also in a form, corresponding to the syntax of

the C++ language.

Table 5.1: Truth table for the extended boolean NOT operation

(NOT) A
!A U F T

U T F

5.2 Generic rule

T
he ’rules’ can be represented in a convenient way as objects. The ’inference engine’

functionality is hidden in the operator functions, which take logical variables or

xps4xps V0.09 38 December 23, 2003

5.3 Agents

Table 5.2: Truth table for the extended boolean AND operation

(AND) A
A && B U F T

U U F U
B F F F F

T U F T

Table 5.3: Truth table for the extended boolean OR operation

(OR) A
A || B U F T

U U U T
B F U F T

T T T T

rules as arguments and they provide generic rules as result. The data of the objects

are an extended boolean value and text strings, furthermore the methods are functions

(comprising operators, logical functions and other computational methods). These rules

have ’their own’ value, which is calculated from some other rules and/or from some

(properly communicated) external values. Since the resulting rules are logical functions,

they are usable in rules, too, as described on page 24 in section 3.

In addition to performing the logical operation, these operator functions make ’history

notes’ about the actual state of the used arguments. When asking for reasoning the con-

cluded value, this history string (preceded by the name and the actual value of the rule)

is returned. Although the built-in ’default reasoning’ is appropriate for most purposes,

also ’custom reasoning’ is possible.

Note that two different evaluation modes can be set for the rules. In the ’complete’

mode all logical variables and functions comprising the rules are evaluated, indepen-

dently from the actual values the rules deliver. In ’shortcut’ mode only those, from which

the result of the rule can be doubtlessly evaluated. For example if the rule is ’A and B’,

and the value of A is false, the result of the logical expression will be false, independently

of the value of B. Because of this, in shortcut mode B will not be evaluated at all. Since

the variables and functions, which are not used actually for calculating the value of the

rule, are redundant; leaving them away makes the evaluation shorter and quicker as well

as the reasoning more clear. Because of this, the ’shortcut’ mode is selected as default.

5.3 Agents

E
xchanging information with its environment is vital for any expert system. This ex-

change is done through agents, a frequently used term in the artificial intelligence.

xps4xps V0.09 39 December 23, 2003

5 The base system

Table 5.4: Truth table for the extended boolean EQUALS operation

(EQUALS) A
A == B U F T

U U U U
B F U T F

T U F T

The information source can be of very different nature: the spectrum data, some spec-

trum component, a database, the user, etc. The only common feature of the agents is

that they can understand the received questions and can reply to them. The base system

introduces a generic ’Agent’ object, from which several specific agents are derived.

5.3.1 Database

D
atabases are a standard part in some expert systems, on any field of application.

The rules read the parameters from the database and decide if to "FIRE". Not yet

implemented.

5.3.2 User

U
sers, in some expert systems, are the only possible external information source, so

to handle users, one needs special user-handling agents. The user gives questions

and replies to the questions concerning database contents, evaluation-related informa-

tion, etc. Not yet implemented.

5.4 Extensions for spectroscopy

I
n case of real-life using an expert system in relation with data acquisition and evalua-

tion software, one has to have some utility objects, like spectrum, peaks, background,

etc. In this project, these softwares are simulated, so also the utility objects serve for this

goal: they provide simulated actions, but in case of real-life usage the real objects shall

provide the same functions.

5.4.1 Spectrum

I
n all spectroscopies, the spectrum (the measured data) is of central importance. It

is the source of all measurement-related information. As it is shown in the object

interdependence diagram (see Figure 5.1 on page 37), in questions concerning data eval-

uation, the computed spectrum (i.e. the envelope resulted by the mathematical model

to the measured data) is the most important object. It has knowledge about the mea-

sured data and related information, like sample and measurement device and is built

xps4xps V0.09 40 December 23, 2003

5.4 Extensions for spectroscopy

Figure 5.1: The spectrum objects interdependence

up from components of different kind. The objects shown carry some evaluation related

information, like peak position, tail height, background slope, etc.

5.4.2 Sample

M
easured spectra, unfortunately, do not contain all the information, needed for as-

sembling expert replies. One of such areas is information about the sample, which

is typically rather purely covered by the experimental spectrum file, so typically additional

information (configuration files, user, etc) have to be used. The sample object provides

such information and is actively used in simulating sample-related information.

5.4.3 Background

B
ackground has no special role (yet) in the rules, so it is implemented only formally.

In later phase of development, it will simulate the behaviour of a real background

object.

5.4.4 Peak

U
sually, the peaks (and some peak-related objects) are the main source of evaluation

information. They deliver energy levels, intensity ratios, background slopes near to

xps4xps V0.09 41 December 23, 2003

5 The base system

the peak, and so on.

xps4xps V0.09 42 December 23, 2003

Chapter 6

General XPS rules

I
n general, it is a good praxis to derive a ’domain-specific generic rule’ from the generic

rule for the specific field and to derive all rules from it. In the case of XPS, the rule

xpRuleXPS serves for this goal.

6.1 Generic XPS rule

A
common, domain specific rule (derived from the general generic rule) can be the

common anchestor for all rules for this specific field.

Note that for non-programmers the shorthand notations ’AND’, ’OR’ and ’NOT’ have

been introduced for the C++ operations ’&&’, ’||’ and ’!’, respectively, and in this part of

the manual the former notations are used for the easier readability.

Also note that a lot of rules exist in two versions. Similar rules are valid in case of

binding energy scale and in case of kinetic energy scale. For completeness, both versions

of the rules are shown here, although there is no functional difference between them. The

rules of form xxxBE refer to the binding energy scale, while the rules of form xxKE refer

to the kinetic energy scale.

6.2 Global variables

S
ome global variables have important effect on most of the rules. They are pre-set (in

the xpsetup.h source file), but your application can set it again any time.

6.2.1 E4Background

F
loating. This variable is defined as the minimum extra length of spectrum on both

sides of energy, used to calculate the background under the peak, see section 6.9 on

page 42. Its default value is 1 eV.

xps4xps V0.09 43 December 23, 2003

6 General XPS rules

6.2.2 EnergyTolerance

D
ouble. This value is used when comparing energy values. If the compares energies

differ less than this tolerance value, they are considered to be equal. It can be set

as described in section 8.3.2.1.2 on page 55.

6.2.3 xpShortcutMode

B
ool. This variable determines if the evaluation of the rules is to be done in complete

or shortcut mode, see section 3.2 on page 26. It can be set as described in section

8.3.2.1.4 on page 56.

6.3 HasPeakInRangeBE

I
t is a frequently used component in the rules whether the spectrum has peak at all

in the region given on binding energy scale. This rule calculates the value of the rule

according to the expression

HasPeakInRangeBE(Spectrum,BELow,BEHigh) =

{ found = false;

for ((Peak in Spectrum.Peaks) or found)

{

found = found

OR

IsPeakInRangeBE(Peak,BELow,BEHigh)

}

}

6.4 HasPeakInRangeKE

I
t is a frequently used component in the rules whether the spectrum has peak at all

in the region given on kinetic energy scale. This rule calculates the value of the rule

according to the expression

{ found = false;

for ((Peak in Spectrum.Peaks) or found)

{

found = found

OR

IsPeakInRangeKE(Peak,KELow,KEHigh)

}

}

xps4xps V0.09 44 December 23, 2003

6.5 IsEnergyBE

6.5 IsEnergyBE

T
his simple ’rule’ is a wrapper rule and returns the state of an internal status flag. It

answers the question whether the energy data are given on binding energy scale. In

the demo program, the actual reply is given correspondingly to the setting of the ’Energy

type’ radiobox on the spectrum panel. In real evaluation/acquisition software, the spec-

trum contains this information but some other method (like asking the user) might also

be applied.

IsEnergyKE(Spectrum) =

{

Spectrum.EnergyBE == True;

}

6.6 IsEnergyKE

T
his simple ’rule’ is a wrapper rule and returns the state of an internal status flag. It

answers the question whether the energy data are given on kinetic energy scale. In

the demo program, the actual reply is given correspondingly to the setting of the ’Energy

type’ radiobox on the spectrum panel. In real evaluation/acquisition software, the spec-

trum contains this information but some other method (like asking the user) might also

be applied.

IsEnergyKE(Spectrum) =

{

Spectrum.EnergyBE == False;

}

Note: Neither of the two rules above fires in case the energy type is
’Unknown’.

6.7 IsEnergyAvailBE

I
t is important to know when working with some algorithms whether the energy data

are available on binding energy scale. This rule determines to calculate the value of

the rule according to the expression

IsEnergyAvailBE(Spectrum) =

{

IsEnergyBE(Spectrum)

OR

IsEnergyKE(Spectrum)

AND

IsXEnergyKnown(Spectrum)

}

xps4xps V0.09 45 December 23, 2003

6 General XPS rules

Since only (wrapped) rules are involved, no difference between demo and real-life be-

haviour.

6.8 IsEnergyAvailKE

I
t is important to know when working with some algorithms whether the energy data

are available on kinetic energy scale. This rule determines to calculate the value of the

rule according to the expression

IsEnergyAvailKE(Spectrum) =

{

IsEnergyKE(Spectrum)

OR

IsEnergyBE(Spectrum)

AND

IsXEnergyKnown(Spectrum)

}

Since only (wrapped) rules are involved, no difference between demo and real-life be-

haviour.

6.9 IsPeakInRangeBE

A
typically internally used rule. Here the information source is a peak object. The

returned value is true if the peak lies in the given energy range, false otherwise. The

rule internally verifies if the available data allow for the secure background determination

on both sides of the peak. If not, the result will be False.

IsPeakInRangeBE(Peak,BLow,BHigh) =

{

// Transform Peak.Energy if on kinetic scale

IsRegionMeasuredBE(Spectrum,BLow-E4Background,BHigh+E4Background)

AND

BLow <= Peak.Energy <= BHigh

}

6.10 IsPeakInRangeKE

A
typically internally used command. Here the information source is a peak object.

The returned value is true if the peak lies in the given energy range, false other-

wise. The rule internally verifies if the available data allow for the secure background

determination on both sides of the peak. If not, the result will be False.

xps4xps V0.09 46 December 23, 2003

6.11 IsRegionMeasuredBE

IsPeakInRangeKE(Peak,KLow,KHigh) =

{

// Transform Peak.Energy if on binding scale

IsRegionMeasuredKE(Spectrum,KLow-E4Background,KHigh+E4Background)

AND

KLow <= Peak.Energy <= KHigh

}

6.11 IsRegionMeasuredBE

S
ometimes it is important to know whether the binding energy region in question is

measured at all. It is ’True’ if the given region is completely included in the measured

energy region. This rule determines to calculate the value of the rule according to the

expression

IsRegionMeasuredBE(Spectrum,BLow,BHigh) =

{

// Transform Spectrum.MinEnergy and Spectrum.MaxEnergy,

// if given on kinetic scale

Spectrum.MinEnergy <= BLow <= Spectrum.MaxEnergy

AND

Spectrum.MinEnergy <= BHigh <= Spectrum.MaxEnergy

}

As you see, the energy limits of the measured spectrum are calculated to binding

energy scale, if the limits of the measured energy region are given on kinetic energy scale.

6.12 IsRegionMeasuredKE

S
ometimes it is important to know whether the kinetic energy region in question is

measured at all. It is ’True’ if the given region is completely included in the measured

energy region. This rule determines to calculate the value of the rule according to the

expression

IsRegionMeasuredKE(Spectrum,KLow,KHigh) =

{

// Transform Spectrum.MinEnergy and Spectrum.MaxEnergy,

// if given on binding scale

Spectrum.MinEnergy <= KLow <= Spectrum.MaxEnergy

AND

Spectrum.MinEnergy <= KHigh <= Spectrum.MaxEnergy

}

xps4xps V0.09 47 December 23, 2003

6 General XPS rules

As you see, the energy limits of the measured spectrum are calculated to kinetic energy

scale, if the limits of the measured energy region are given on binding energy scale.

6.13 IsXEnergyKnown

I
t is a frequently used wrapper rule whether the excitation energy is known at all. The

reply is returned based on some internal flag.

IsXEnergyKnown =

{

Spectrum.XEnergyKnown == True;

}

In the demo program, the internal flag is set correspondingly to the setting of the

’XEnergyKnown’ radiobox on the spectrum panel. In real evaluation/acquisition software,

the flag is set based on the spectrum contained information but some other method (like

asking the user) might also be applied.

xps4xps V0.09 48 December 23, 2003

Chapter 7

Carbon contamination rules

C
arbon is an important element in the experimenter’s praxis. It might be present in

the spectrum as one of its constituent, or might build-up on the sample surface due

to environmental effects.

7.1 DoMarkCarbon1sPeak

A
n active rule, for finding the Carbon 1s peak in the spectrum and setting its corre-

sponding flag. If the flag of some peak in the spectrum is already marked the rule

accepts that peak as "Carbon 1s peak" and returns without setting any flag. If more than

one peaks having that flag set are present in the spectrum, the rule does nothing, but

returns with an error message, naming the first two peaks found as having the flag set.

7.2 DoesSampleContainCarbon

I
t is a wrapper rule used in the carbon-contamination rules, whether the sample itself

contains carbon. The reply is returned based on some internal flag.

DoesSampleContainCarbon =

{

Sample.ContainsCarbon == True;

}

In its present form, the rule returns the status of "ContainsCarbon" of the "sample"

object. In the demo, that status is set from the "Sample info" notebook page, in real-life

case it might be contained in the spectrum-attached file or the user might be asked.

7.3 HasCarbon1sPeak

I
f the carbon is present in the spectrum, can be checked by this rule as proposed in

[CB-99]. It is used in this project as

xps4xps V0.09 49 December 23, 2003

7 Carbon contamination rules

HasCarbon1sPeak (Spectrum) =

{

IsCarbonXPresent(Spectrum)

AND

IsCarbonAugerPresent(Spectrum)

AND

NOT IsRutheniumPresent(Spectrum)

}

7.4 IsCarbon1sPeak

T
he rule set proposed in [CB-99] does not define this rule. One possible way could

be to ’fire’ if the rule ’HasCarbon1sPeak’ fires, but is might be a problem if more

than one peaks in the corresponding region exist. Presently, the rule "fires" if the flag

Peak.Carbon1s_flag is set.

IsCarbon1sPeak =

{

Peak.Carbon1sPeak == True;

}

7.5 IsCarbonAngleRatioBiggest

F
rom the whole spectrum ratioing method follows that the ptotopeaks from elements

located at different depts in the sample result a different intensity ratio for the pho-

topeak measured at different angles. If this ratio for carbon is higher than that for all

other elements, it increases the certainty that carbon is present as contamination.

7.6 IsCarbonAugerPresent

T
his is a wrapper rule used in rule HasCarbon1sPeak. It uses internally the rule

HasPeakInrangeKE. It might be necessary to add some more rules later.

IsCarbonAugerPresent (Spectrum)

{

HasPeakInrangeKE(Spectrum, 269, 275) //KLL Auger present

}

7.7 IsCarbonContaminationConsensus

I
f the sample is carbon contaminated, cannot be decided from one single condition.

Castle (maybe arbitrarily) suggested to use a special rule involving five subsets, where

xps4xps V0.09 50 December 23, 2003

7.8 IsCarbonEnergySeparationOK

the consensus of the comprised rules decides about the carbon contamination. These

used subrules are

• IsCarbonEnergySeparationOK (see section 7.10)

• DoesSampleContainCarbon (see section 7.2)

• IsCarbonShirleyTailHigh (see section 7.10)

• IsCarbonPostPeakSlopeBiggest (see section 7.9)

• IsCarbonAngleRatioBiggest (see section 7.5)

These rules have a credit and the rule results in true if the percentage of the weighted

"True" replies from the subrules is above some upper threshold value (by default 70%),

"False" if it is below some lower threshold value (by default 25%), "Unknown" between

them. The resulting reasoning contains the reasonings of the subrules under "Details".

7.8 IsCarbonEnergySeparationOK

E
nergy separation between the two major excursions in the first derivative of the KLL

spectrum of carbon is indicative of the hybridization state of the carbon compound.

The energy separation value should be ca. 17 eV, if it is between 15 eV and 20 eV, it

increases the certainty that carbon is present as contamination.

7.9 IsCarbonPostPeakSlopeBiggest

I
t is expected for carbon as contamination that the slope of the tail on the low energy

side of the peak is higher than the slope of the peaks from other elements. The rule

finds all peaks and compares this parameter to that of the C1s peak. If the condition that

the slope is biggest for the carbon peak is fulfilled, it increases the certainty that carbon

is present as contamination.

7.10 IsCarbonShirleyTailHigh

S
hirley scattering parameter (the tail height to the peak height ratio) is also one of the

signs used in identifying the carbon as contamination. This rule expects a Carbon

1s line present in the spectrum. The tail height is compared against the Shirley height

threshold value (by default 0.1). A value above that threshold increases the certainty that

carbon is present as contamination.

xps4xps V0.09 51 December 23, 2003

7 Carbon contamination rules

7.11 IsCarbonXPresent

T
his is a wrapper rule used in rule HasCarbon1sPeak. It uses internally the rule

HasPeakInRangeBE. It might be necessary to add some more rules later.

IsCarbonXPresent (Spectrum)

{

HasPeakInRangeBE(Spectrum, 282, 288) //Carbon line(s) present

}

7.12 IsRutheniumPresent

T
his is a wrapper rule used in rule HasCarbon1sPeak. It might be necessary to add

some more rules later. It uses internally the rule HasPeakInRangeBE.

IsRutheniumPresent (Spectrum)

{

HasPeakInRangeBE(Spectrum, 458, 462) //ruthenium present

}

xps4xps V0.09 52 December 23, 2003

Chapter 8

The demo program

I
n order to illustrate the abilities of the library and also to provide a way to verify the cre-

ated rules under simulated external conditions, a demo program is also provided with

the package. The application is based on the multi-platform macro package wxWindows

[WX-92]. It provides a Graphic User Interface for making the necessary settings/changes

for the rules, the used settings, the reasoning and so on.

The demo program is provided to simulate the data acquisition and evaluation soft-

ware and to allow the "embedded expert system" to interact with them. Here the men-

tioned components are simulated (via GUI screen elements settings) and the expert sys-

tem rules are really acting on the simulated replies. The demo applications on the differ-

ent software platforms have a very similar functionality, except that they have a "native",

platform-specific appearance and behaviour. This difference might also involve minor

functional differences.

Note that this program is only for illustration, i.e. it is not equipped with a lot of

comfort utilities and also it is not bullet-proof. Please use it setting "reasonable" condi-

tions only; it was not a point of design to protect it from mishandling. Playing with the

demo might be of interest for all end-users, as well as it is the proper way of acquiring

initial impressions about the functionality implemented in the different rule sets. Note

that similar applications can effectively assist the experts to study the rule sets in their

experimental phase.

The executable demo file (*.exe in case of Win32 platform) can be found in the "/bin"

subdirectory. It is ready to operate after installation: just start it as any other application

on the given platform.

Note: The new value written in the text input boxes becomes effective
only if you terminate the input with the "enter" key. In that case the
typed string is interpreted, converted to the internal representation,
and displayed in a normalized form.

xps4xps V0.09 53 December 23, 2003

8 The demo program

Figure 8.1: The spectrum page of the demo application

8.1 The main window

A
fter starting up the executable xps4c1s, first a language selection window (see Fig-

ure 8.1 on page 50) pops up, and you can select your preferred language. Note that

the default language of the application is English.

After selecting the language, a main frame (see Figure 8.2 on page 51), containing a

"notebook" comes up (i.e. several notebook pages of different function can be selected

with the "tabs" at the top of the internal frame). Right now, the notebook is only equipped

with one page (labeled ’REASONS’) which contains the welcome text. Later (as you will

see it in a moment) it will contain the reasoning of the actual rule. It is cleared before

selecting another rule to ’Fire!’, so it contains always the reasoning of the result of one

single rule.

Above the notebook and below the heading line, you find the "menubar", the menu

items of which give you a way to try out different rules, to change some settings, to

simulate the actions of the data acquisition/simulation software, etc.

In its initial state, the demo application simulates a started-up data evaluation pro-

gram, with no experimental data loaded. In order to do any action, you need to use

the menu system as you used at any other application on your platform: click or use

schortcut or whatever you prefer to handle the menu items. Just note: you can exit the

demo program via executing command "SPECTRUM|EXIT". Here and below, the bar char-

acter "|" is used to separate the different level menu items, so in this way "white space"

characters in the menu item names are allowed.

8.2 Verifying rules

I
n order to simulate a data evaluation program, select the "SPECTRUM|LOAD" com-

mand. You migh see that the menu commands are "context sensitive": some of the

xps4xps V0.09 54 December 23, 2003

8.2 Verifying rules

Figure 8.2: The main page of the demo application

menu items are disabled (grayed out) in certain states. Having loaded measured exper-

imental data, some of the formerly disabled items get enabled, so you have more possi-

bilities in the "evaluation". Namely, after reading in some experimental data, you have

one more notebook page (tagged with "Spectrum"), simulating the read-in experimental

spectrum.

To make a rule "Fire", just select the corresponding rule (in some case the "OPTIONS|

SETTINGS" menu items shall also be used, as discussed at the individual rules). Right

now, select "RULE|XPS|ISENERGYAVAILBE" . Doing so, the notebook page changes to

the ’REASONS’ page, and the reasoning (shown in the notebook page) tells you in the first

line the result of calculating the value of the rule. The line contains between quotes the

name of the rule and in capitals its value, and in the forthcoming line(s) the reasoning,

i.e. it shows what are the conditions under which the inference engine concludes such

a reply. Click on tab "SPECTRUM" now, change the settings of the radioboxes and select

rule "RULE|XPS|ISENERGYAVAILBE" again. The inference engine will make reasoning as

xps4xps V0.09 55 December 23, 2003

8 The demo program

Figure 8.3: The spectrum page of the demo application

described in chapter 3 on page 24.

You may also check the effect of the "shortcut" evaluation mode, see section 5.2 on

page 34. Select command "OPTIONS|SETTINGS|SHORTCUT MODE" (see below) and select

the rule "RULE|XPS|ISENERGYAVAILBE" again. Now the reasoning is the same, but

more verbose. To try out some more rules, see the notebook pages and menu items in

the sections below.

8.2.1 The spectrum page

S
pectrum notebook page (see Figure 8.3 on page 52), created with command "SPECTRUM|

LOAD", contains some characteristics of the "measured spectrum": the demo sets the

low and high energy of the measured data range, as well as the value of the X-ray exci-

tation energy. Please notice that as shown by the radioboxes next to the corresponding

energy values, the energy type is assumed to be of type binding: i.e. the demo program

assumes that the measured spectrum data file does contain this information (say the

measured counts are given in VAMAS form). Similarly, the status if the excitation en-

xps4xps V0.09 56 December 23, 2003

8.2 Verifying rules

ergy is known, is set to ’True’, and for convenience, the well-known Al Kα default value

is pre-set. The page also contains the value of the charging correction and the energy

separation of the carbon peaks.

Note that the demo can only handle one "spectrum" at a time; consequently, the

command generating the notebook page can only be used once. Of course, all other

pages can only be created when the spectrum page exists already.

Figure 8.4: The peak page of the demo application

8.2.2 The peak page

P
eak notebook page (see Figure 8.4 on page 53), created with command "SPECTRUM|

ADD PEAK", contains the expert-system related characteristics of a peak, in three

groups.

The very basic parameter block serves the "Identification" of the peak. The very basic

parameter of the peak is its energy, which is not only a value but also an energy type, as

shown by the radiobox next to the value. The energy type is inherited from the parent

spectrum (the actual value is used when creating the peak), but after creating it can be

set independently. Similarly, the value of the exciting energy (used to change between

xps4xps V0.09 57 December 23, 2003

8 The demo program

kinetic and binding energy scale) and its type are inherited from the parent spectrum,

but after creating the peak they can be set independently.

The parameters in the next block supports the "Carbon contamination" rule set. The

radiobox and the two values are used when dealing with "carbon contamination" rules;

for details see [CB-99] and references therein.

The parameters "Quantification" box are used for calculating the optimal measure-

ment time or precision. For details see section 4 on page 31.

Note that this page can only be created when the "spectrum page" created already.

Figure 8.5: The sample page of the demo application

8.2.3 The sample page

S
ample notebook page (see Figure 8.5 on page 54), created with command "SPECTRUM|

ADD SAMPLE INFO" , will contain sample-related information, usually found in the

spectrum file. For the present rule set, only the carbon content-related info is important.

Note that this page can only be created when the "spectrum page" created already.

xps4xps V0.09 58 December 23, 2003

8.3 The menu system

8.3 The menu system

T
he demo application can be controlled via commands, which are reachable through

the menu items of the application. Between the title line and the notebook page,

a menubar is shown. The items (menus, submenus) can be selected as usual on your

platform.

8.3.1 Help menu

H
elp menu items usually contain on-line help facilities, some description, etc. In this

early phase, only one menu item provided.

8.3.1.1 About

B
usiness card of the demo application will be shown if you select this command.

It contains the author’s address, version number of its own as well as that of the

wxWindows package it is based upon.

8.3.2 Options menu

U
nder this menu group you will find some settings, options, etc., which commands

do not fit in the other menu groups.

8.3.2.1 Settings

S
ome setting affect seriously the operation of the demo program. Those settings are

described in this command group.

8.3.2.1.1 Background length The peak evaluation procedure need some extra spec-

trum region, to determine the background. This commands allows to set this value (by

default 1eV). The rules of type "Is peak in region" use this value to determine is the peak

can be safely evaluated from the data measured on that region.

8.3.2.1.2 Energy tolerance When comparing energy values of float type, the program

uses the "within this tolerance interval" criterium rather than exact match. This com-

mand allows to change the value of this interval (0.01 eV by default).

8.3.2.1.3 Use Local Numeric mode Data format of floating numbers, allowed in the

expert system data files, as well as those in the results, depend on the actual language

(more precisely: on the corresponding local settings) selected, because some languages use

"comma" as decimal point, while other languages use "comma" for separating data fields

in the input/output files. If your computer is set up to use these local settings, especially

"local numerics", then you might wish to use either your local number formatting or the

xps4xps V0.09 59 December 23, 2003

8 The demo program

conventional ("C"-like) formatting when reading and writing floating numbers. Depending

on the actual value of this flag, xps4xps sets the locale numeric settings to those used in

the language "C" (this is the default) if the flag is disabled or uses the numeric settings

corresponding to the selected language if it is enabled. In the latter case numbers will be

formatted in the output files and are expected to be formatted in the input files according

to the settings used in that language. The setting will be valid until you change it again.

8.3.2.1.4 Shortcut mode As described in section 3.2 on page 26, the rule evaluation

can be carried out in two different evaluation modes. This menu item is checkable, i.e.

in case the shortcut mode is selected, a checkmark can be seen before the menu item

name. Checking the menu item repeatedly, the variable xpShortcutMode changes from

true to false or oppositely. Its default value is ’true’.

8.3.2.1.5 Trial energy max Some commands use an energy range, given by their

lower and upper bound. This command allows to set the upper limit of the trial energy

region.

8.3.2.1.6 Trial energy min Some commands use an energy range, given by their lower

and upper bound. This command allows to set the lower limit of the trial energy region.

8.3.3 Rule menu

R
ules are the most important component of the present expert system. Selecting one

of the menu items in this group, you can try out the rules in this library. Note

that all rules are operating on simulated external conditions, and the simulation is done

by GUI elements, as described at the individual rules. The name of the menu items is

identical with those used in the "Reference manual".

8.3.3.1 Carbon

C
arbon-related rules are included in this group, like rules for checking the presence

of carbon in general or carbon as contamination.

8.3.3.1.1 DoMarkCarbon1sPeak Finds the carbon 1s peak as discussed in section

7.3 on page 45 and marks it (sets the flag "Is C1s peak"). Also checks if more than one

peaks are in the spectrum with this flag set.

8.3.3.1.2 HasCarbon1sPeak Returns value of the rule, if carbon 1s peak is present in

the spectrum, as discussed in section 7.3 on page 45.

8.3.3.1.3 IsCarbonAugerPresent Returns the value of the rule if the Carbon Auger

group is present, as discussed in section 7.6 on page 46.

xps4xps V0.09 60 December 23, 2003

8.3 The menu system

8.3.3.1.4 IsCarbonContaminationConsensus This menu item invokes the rule Is-

CarbonContaminationConsensus as discussed in section 7.7 on page 46.

8.3.3.1.5 IsCarbonXPresent Returns the value of the rule if the C1s peak is present,

as discussed in section 7.11 on page 48.

8.3.3.1.6 IsRutheniumPresent Returns the value of the rule if the Ruthenium is

present, as discussed in section 7.12 on page 48.

8.3.3.2 Sample

S
ample-related rules are included in this group. Typically, they are only used to verify

sub-rules, used in the more "physical" rules.

8.3.3.2.1 Contains Carbon Returns value of the rule, if carbon present in the sample

by its composition, as discussed in section 7.2 on page 45.

8.3.3.3 Truth table

T
ruth table of the 3-valued logic will be printed in the log window. The values are set

as outlined in section 5.1 on page 34 and in tables 5.1-5.4.

8.3.3.4 XPS

G
eneral XPS-related rules belong to this group. Although the rules are very basic

ones, it is worth to study and understand them, because they are frequently used

in the more advanced rules.

8.3.3.4.1 HasPeakInRangeBE Returns the value of the rule if the given binding energy

region contains a peak, as discussed in section 6.3 on page 40.

8.3.3.4.2 HasPeakInRangeKE Returns the value of the rule if the given kinetic energy

region contains a peak, as discussed in section 6.4 on page 40.

8.3.3.4.3 IsEnergyAvailBE Returns the value of the rule if the binding energy values

are available in the generic spectrum object, as discussed in section 6.7 on page 41.

8.3.3.4.4 IsEnergyAvailKE Returns the value of the rule if the kinetic energy values

are available in the generic spectrum object, as discussed in section 6.8 on page 42.

8.3.3.4.5 IsRegionMeasuredBE Returns the value of the rule if the trial energy region

is within the measured energy region. It is assumed that the trial energy region limits are

given on binding energy scale.

xps4xps V0.09 61 December 23, 2003

8 The demo program

8.3.3.4.6 IsRegionMeasuredKE Returns the value of the rule if the trial energy region

is within the measured energy region. It is assumed that the trial energy region limits are

given on kinetic energy scale.

8.3.4 Spectrum menu

S
pectrum operations are only simulated in the demo application. However, the func-

tional equivalents shall be available on the real-time data acquisition and evaluation

systems.

8.3.4.1 Add peak

P
eak component can be added via using this command. As a result, a new panel

appears in the ’notebook’ and some peak parameters can be set via the controls on

that panel. This command is only available if "spectrum is loaded" already.

8.3.4.2 Add sample

S
ample information can be added via using this command. As a result, a new panel

appears in the ’notebook’ and some sample parameters can be set via the controls on

that panel. This command is only available if "spectrum is loaded" already.

8.3.4.3 Exit

T
he EXIT command is by convention placed under the main command group, in this

case here, although it has not much to do with the ’Spectrum’ group’s functionality.

8.3.4.4 Load

L
oad-ing a spectrum is absolutely necessary to deal with some spectrum in the sim-

ulated data evaluation software. No other "spectrum evaluation operations" are pos-

sible before it. After ’Load’ing, a new spectrum panel appears and some characteristics of

the simulated spectrum can be set using the controls on this panel.

8.3.5 Wizard menu

W
izards are the easy and safe way for the beginners to use the expert system (see

section 3.6 on page 29). Just select the wizard you need and follow the on-screen

instructions (and set the different control elements on the different wizard pages) until

it finishes and read the conclusion from the screen. Because the wizards use the same

rules and reasoning, you will surely arrive at the same conclusion. However, some (but

not all) conditions are built-in the wizard, so it might be a safer way to reach your goal.

xps4xps V0.09 62 December 23, 2003

8.3 The menu system

Note: The inference method and the source of information for the wiz-
ards are the same as for the rules. Because of this, in this demo
program the information source panels in the main notebook are used
(or created if not created before starting the wizard). While the wizard
is running, you can only handle the ’copy’ you have on the wizard
page, but upon a wizard page change, the ’original’ is also updated.

Figure 8.6: The spectrum setup page of the carbon wizard

All wizard pages (for an example see Figure 8.6 on page 59) contain a title line, a

main panel and a bottom control line. In the control line some buttons allow to go to the

previous and the next wizard page, or to cancel executing the wizard. The "Previus" and

"Next" direction buttons might get disabled on some conditions temporarily. Although

there is a pre-defined sequence for displaying the wizard pages, some of them (depending

on the actual state of the control elements and the user replies) might be skipped.

The left side of the main panel contains a bitmap (a real XPS wizard). The right side

does the real job. The text at the top of the panel explains the goal of the current step.

The bottom part contains the control elements (the source of the information). Setting the

control elements properly is a precondition to advance to the next page. Also sometimes

parts of the intruction text (at the top of the panel) as well as some controls (at the

bottom of the panel) are greyed out, what means that that instruction/control is not

actual/effective any more.

xps4xps V0.09 63 December 23, 2003

8 The demo program

During stepping through the wizard, all necessary conditions are established and

all control elements are set, so the wizard ends up with telling the conclusion and its

reasoning. The final conclusion is told when the wizard finishes. Before this, it tells

a temporary conclusion and its reasoning; at this point you might go back and correct

some settings. After the wizard finishes, you need to run the wizard again if you wish to

see how the conclusion changes with some setting. If such repeated running occurs, the

previously established conditions are used (i.e. you do not start from scratch the second

time). You might also use these conditions if you use the rules directly.

8.3.5.1 Is Carbon present

F
or determining if the carbon is present in your spectrum, several steps are necessary.

This "carbon wizard" will guide you through the steps you have to do and also helps

to establish the necessary conditions.

As all wizards, it begins with a greeting page. In the first two function pages you might

define the spectrum you are dealing with (i.e. it allows to "load" a spectrum) and allows

to set the spectrum-related parameters. If the spectrum is already present, the first page

will be skipped.

The next two wizard pages allow to define and parametrize the Carbon 1s peak (the

peak you guess to be that). If no peaks are available (the available peaks are which are

defined for the spectrum and are not yet assigned to any of the peaks needed for the

Carbon rule), it allows to create a new peak. The new peak inherits the energy type and

the other settings from the parent spectrum, but you are allowed to change any of them.

According to the "Carbon rule", the presence of the Carbon Auger line is also necessary

to confirm the presence of the C1s line. The next two pages (in complete analogy with the

previous two pages) allow to define and parametrize these Auger peaks.

A further requirement might be the absence of the Ruthenium. The third pair of wizard

pages defines and parametrizes the Ruthenium peak (if any).

Of course, it might happen that there is no such peak in the sample. In such a case,

just uncheck the checkbox at the very bottom of the panel and you will see the conclusion

immediately.

The wizard pages allow you some freedom. They tell what is expected at that position,

but you are free to set improper energy type or value, for example. The rule will evaluate

this situation correctly, so in this way you cannot change the conclusion. An alternative

would be requiring to define a peak with parameters which meet the expectation.

xps4xps V0.09 64 December 23, 2003

Part III

Appendix

xps4xps V0.09 65 December 23, 2003

Bibliography

[CB-99] J. E. Castle, M. A. Baker, The feasibility of an XPS expert system demonstrated
by a rule set for carbon contamination. J. Electron Spectroscopy and Related

Phenomena 105(1999)245-256

[CJ-02] J. E. Castle, A wizard source of expertize in XPS. Surface and Interface Anal-

ysis 33(2002)196-202

[DCJ89] C. J. Date, Be Careful with SQL EXISTS! Database Programming and Design

2(1989)50-52

or http://www.firstsql.com/inulls.htm

[DHS88] W. A. Dench, L. B. Hazell, M. P. Seah, VAMAS Surface Chemical Analysis
Standard Data Transfer Format with Skeleton Decoding Programs. NPL Report

DMA(A)164, July 1988; Surface and Interface Analysis 13(1988)63-122.

[EB-99] B. Eckel, http://www.mindview.net/Books

[FA-66] M. Fisch, T. Atwell, Peirce’s Triadic Logic. Transactions of the Charles S.

Peirce Society 11(1966)71-85

or http://plato.stanford.edu/entries/peirce-logic/

[HD-97] Dimitri van Heesch, doxygen, a documentation system for C++, C, Java, IDL
http://www.doxygen.org

[HH-92] K. Harrison, L. B. Hazell, The Determination of Uncertainties in Quantitative
XPS/AES and its Impact on Data Acquisition Strategy. Surface and Interface

Analysis 18(1992)368-376.

[OM-96] M. F. X. J. Oberhumer, L. Molnár, the Ultimate Packer for eXecutables
http://upx.sf.net/

[OS-01] The Open Source Initiative, The Open Source development
http://www.opensource.org/

[RJ-96] J. Russel, Inno Setup self-installer package
http://www.jrsoftware.org/isinfo.php

xps4xps V0.09 66 December 23, 2003

BIBLIOGRAPHY

[SC-01] Christian Schenck, MiKTeX, ... typesetting beautiful documents ...
http://www.miktex.org/

[SF-02] Open Source Development Network, Inc, Breaking Down the Barriers to Open
Source Development http://www.sourceforge.net/

[SRS98] Seatle Robotics Society, Fuzzy Logic Tutorial
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

[TC-99] TeXnicCenter, An integrated development environment (IDE) for developing
LaTeX-documents on Microsoft Windows
http://www.toolscenter.org/products/texniccenter/

[VJ-02] J. Végh, XPS4XPS: an ’embedded’ eXPert System for XPS J. Electron Spec-

troscopy and Related Phenomena 133(2003)87. to be published in Computer

Physics Communications

[VJ-88] J. Végh, The analytical form of the Shirley-type background.
J. Electron Spectroscopy and Related Phenomena 46(1988)411.

[WX-92] J. Smart, et al. The open source, cross-platform GUI framework
http://wxwindows.sourceforge.net/

[XPS02] J. Végh, An "embedded" expert system for XPS
http://xps4xps.sourceforge.net/

xps4xps V0.09 67 December 23, 2003

Index

[CB-99], 7, 28, 45, 46, 54

[CS-01], 9

[DCJ89], 16

[EB-99], 14

[FA-66], 16

[HD-97], 8, 9

[HH-92], 7, 12, 31

[OM-96], 9

[OS-01], 7

[RJ-96], 9, 18

[SF-02], 7

[SRS98], 15

[TC-99], 9

[VJ-02], 7

[WX-92], 6, 8, 16, 20, 29

[XPS02], 18

39

&&, 25, 39

OPTIONS

SETTINGS, 51

SHORTCUT MODE, 26, 52

RULE

XPS

ISENERGYAVAILBE, 51, 52

SPECTRUM

ADD PEAK, 53

ADD SAMPLE INFO, 54

EXIT, 50

LOAD, 50, 52

3-valued boolean, 27

AND, 25, 35, 39

background length, 39, 55

boolean

extended, 16

C++, 8, 25

C-like

number formatting, 56

carbon wizard, 60

changes.txt, 19

charging shift, 13

class name, 25

comma, 55

complete mode, 26

copyright, 6

custom reasoning, 26, 27, 35

decimal point, 55

default reasoning, 26, 27, 35

DoesSampleContainCarbon, 45

domain-specific rule, 21

DoMarkCarbon1sPeak, 45

energy

shift, 13

tolerance, 40, 55

trial

maximum, 56

minimum, 56

energy scale

binding, 13

kinetic, 13

EQU, 36

evaluation mode, 40

complete, 26

shortcut, 26

expert knowledge, 7

expert system, 7, 14, 24

shell, 16

xps4xps V0.09 68 December 23, 2003

INDEX

extended logic, 15

Free Software Foundation, 6

General Public Licence, 6

generic rule, 35

GNU, 6

HasCarbon1sPeak, 45

HasPeakInRangeBE, 40, 57

HasPeakInRangeKE, 57

HasPeakInRangKE, 40

inference engine, 7, 14, 16, 24, 26

Inno Setup installer, 18

IsCarbon1sPeak, 46

IsCarbonAngleRatioBiggest, 46

IsCarbonAugerPresent, 46

IsCarbonContaminationConsensus, 46

IsCarbonEnergySeparationOK, 47

IsCarbonPostPeakSlopeBiggest, 47

IsCarbonShirleyTailHigh, 47

IsCarbonXPresent, 48

IsEnergyAvailBE, 41, 57

IsEnergyAvailKE, 42, 57

IsEnergyBE, 41, 42

IsEnergyKE, 41, 42

IsPeakInRangeBE, 40, 42

IsPeakInRangeKE, 40, 42

IsRegionMeasuredBE, 42, 43, 57

IsRegionMeasuredKE, 42, 43, 58

IsRutheniumPresent, 45, 48

IsXEnergyKnown, 41, 42, 44

language, 50

local

number formatting, 55

logic

3-valued, 16

extended, 15

logical operator, 27

menubar, 50

NOT, 34, 39

notebook, 50

number formatting, 55

numeric mode

local, 55

object, 14

oriented programming, 14

OR, 25, 35, 39

radiobox

ContainsCarbon, 45

energy type, 41

XEnergyKnown, 44

readme.txt, 19

reasoning, 16, 26, 27, 50

custom, 26, 27

default, 26, 27

rule

coding, 24

domain specific, 21

evaluation, 26

generic, 35

wrapper, 26, 27

shortcut mode, 26, 35, 52, 56

system locale, 55

wizard, 29, 58

carbon, 60

wrapper rule, 26, 27

wxWindows, 6, 16

X-ray, 13

xrDoesSampleContainCarbon, 45

xrDoMarkCarbon1sPeak, 45

xrHasCarbon1sPeak, 45

xrHasPeakInRangeBE, 40, 48

xrHasPeakInRangeKE, 40

xrHasPeakInrangeKE, 46

xrIsCarbon1sPeak, 46

xrIsCarbonAngleRatioBiggest, 46

xrIsCarbonAugerPresent, 45, 46

xps4xps V0.09 69 December 23, 2003

INDEX

xrIsCarbonEnergySeparationOK, 47

xrIsCarbonPostPeakSlopeBiggest, 47

xrIsCarbonShirleyTailHigh, 47

xrIsCarbonXPresent, 45, 48

xrIsEnergyAvailBE, 41

xrIsEnergyAvailKE, 42

xrIsEnergyBE, 41

xrIsEnergyKE, 41

xrIsPeakInRangeBE, 42

xrIsPeakInRangeKE, 42

xrIsRegionMeasuredBE, 43

xrIsRegionMeasuredKE, 43

xrIsRutheniumPresent, 48

xrIsXEnergyKnown, 44

xps4xps V0.09 70 December 23, 2003

	Table of contents
	List of figures
	List of tables
	Copyright notice
	Foreword
	I User's Guide
	Base terms
	Spectrum acquisistion and evaluation
	Acquisition
	Modeling

	XPS base terms
	Binding/kinetic energy
	Energy scale types
	Charging shift

	Objects
	Expert systems
	The 3-valued logic
	The inference engine
	The multi-platform feature

	Installing
	How to install
	Packages
	Executable for 32-bit Windows
	Sources for 32-bit Windows
	Static binary for Linux
	Sources for Linux
	Portable documentation

	What to install
	Developer
	Expert
	User

	The installed files

	Using rules
	Coding a rule
	Reasoning
	Wrapper rules
	Combined rules
	Subrange-type rules
	Multiple condition rule

	Verifying rules
	Rules vs wizards

	Data acquisition

	II Reference Guide
	The base system
	Extended boolean logic
	Generic rule
	Agents
	Database
	User

	Extensions for spectroscopy
	Spectrum
	Sample
	Background
	Peak

	General XPS rules
	Generic XPS rule
	Global variables
	E4Background
	EnergyTolerance
	xpShortcutMode

	HasPeakInRangeBE
	HasPeakInRangeKE
	IsEnergyBE
	IsEnergyKE
	IsEnergyAvailBE
	IsEnergyAvailKE
	IsPeakInRangeBE
	IsPeakInRangeKE
	IsRegionMeasuredBE
	IsRegionMeasuredKE
	IsXEnergyKnown

	Carbon contamination rules
	DoMarkCarbon1sPeak
	DoesSampleContainCarbon
	HasCarbon1sPeak
	IsCarbon1sPeak
	IsCarbonAngleRatioBiggest
	IsCarbonAugerPresent
	IsCarbonContaminationConsensus
	IsCarbonEnergySeparationOK
	IsCarbonPostPeakSlopeBiggest
	IsCarbonShirleyTailHigh
	IsCarbonXPresent
	IsRutheniumPresent

	The demo program
	The main window
	Verifying rules
	The spectrum page
	The peak page
	The sample page

	The menu system
	Help menu
	About

	Options menu
	Settings
	Background length
	Energy tolerance
	Use Local Numeric mode
	Shortcut mode
	Trial energy max
	Trial energy min

	Rule menu
	Carbon
	DoMarkCarbon1sPeak
	HasCarbon1sPeak
	IsCarbonAugerPresent
	IsCarbonContaminationConsensus
	IsCarbonXPresent
	IsRutheniumPresent

	Sample
	Contains Carbon

	Truth table
	XPS
	HasPeakInRangeBE
	HasPeakInRangeKE
	IsEnergyAvailBE
	IsEnergyAvailKE
	IsRegionMeasuredBE
	IsRegionMeasuredKE

	Spectrum menu
	Add peak
	Add sample
	Exit
	Load

	Wizard menu
	Is Carbon present

	III Appendix
	Bibliography
	Index

