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Abstract

Different external expert system shells have been used as the basis for previous attempts to develop an expert system for
the X-ray photoelectron spectroscopy (XPS). The present paper describes a reasoning expert system engine, which can be built
directly into XPS data-acquisition and data-evaluation software. The feasibility of the realized system is demonstrated through
implementation of a real-life rule set (the carbon contamination rules).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Expert systems have been developed for a variety of
applications, and Castle and Baker[1] have proposed
a design for an expert system suitable for application
in X-ray photoelectron spectroscopy (XPS). A work-
shop was held in St. Malo[2] in April 2002 to fur-
ther develop the concept and rule base for this latter
application. In the former expert system applications,
some kind of expert system shell is used and the user
communicates with it via a natural language; i.e.the
user “interfaces” with the expert system by provid-
ing measurement and evaluation data, sample infor-
mation, etc. The expert system shells are powerful and
require extensive computer resources. However, most
of their functionality is not necessary for the intended
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XPS-specific system. In addition, the presence of the
user (with more or less expertise in the field) makes the
process more or less subjective and cumbersome. In
that form, it is not suitable for building an expert sys-
tem into data-acquisition and data-evaluation software.

Another approach is suggested here. The most
important part of the expert system: the “inference
engine” is retained, and this is implemented in a way
to allow access to the spectrum measurement, evalu-
ation, sample handling, etc. data. A special “generic
rule” form can then be constructed. Based on this, a
special (‘hard-wired’) rule set can be designed, that
applies logical operations to the replies from the in-
forming objects. The system constructed in this way
is able to answer questions from the user (using the
available information sources) and is able to explain
its decision. The forms in which questions are re-
ceived and answers delivered are left open to allow
maximum flexibility.

0368-2048/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
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Fig. 1. Usage levels in the proposed system.

2. The ‘embedded inference engine’

The suggested system assumes that the rules for the
expert system can be constructed using pure logical
functions. This system has three levels (seeFig. 1).
On the base level (“Base”), the extended logic is de-
fined (seeSection 2.1), with operations. Based on this
logic, a generic rule is constructed (seeSection 2.3) to
communicate with the informing objects and to assem-
ble replies (including reasoning of the decision); i.e.
it provides the functionality of the ‘inference engine’.
On the expert level (“Rules”), domain-specific rules
are created that read the actual status of the com-
prised objects (for details seeFig. 2 andSection 3.3)
and produce the established, expert-proven replies. On
the user level (“Applications”), these decisions can be
used or their reasoning can be studied.

For the first level (the first version of) a turnkey sys-
tem is provided. On the expert level, a domain-specific
XPS rule system is provided, and the “carbon
contamination” rule set[1] is implemented as an ex-

ample. It is hoped to add several more rules later.
The user level remains completely within the user’s
software; as an example a demonstration for using
the “carbon contamination” rule set is presented[3].

2.1. Extending Boolean logic

In real life the replies of an expert person to a ques-
tion cannot only be a definite “yes” or “no”, but even
“maybe yes” or “probably no”. It might also happen
that some information is not available or is uncertain
or is unknown. In addition, an expert person might
say, “in lack of,. . . , I cannot decide”, “I am not sure”,
or even “I do not know”. These replies can be used as
input information when formulating another question
to an expert person. Obviously, a “maybe yes” is not
identical with “yes”. One of the most critical points of
an expert system is the type of the output it can give
and the type of the input it can receive.

For operating the inference engine properly, one
has to extend the generally used (two valued) Boolean
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Fig. 2. Object interdependence in the expert system-controlled data-evaluation software.

logic to multiple-valued logic. The idea is not strange
at all: see fuzzy logic and its applications, for ex-
ample[4]. Obviously, it would be useless to extend
the “yes/no world” with all the mentioned reply
types; rather, introducing a third state (“unknown/not
set/do not know”) would suffice. Even this idea is
not new: see[5]. Also note that the ANSII stan-
dard for SQL database-handling language (ANSI
SQL 89) applies a triple-valued logic[6]. Intro-
ducing this extension enables the expert system to
simulate an expert person who is able to deal with
incomplete or not fully reliable input data, and is
able to give a reply other than a definite “yes”
or “no”.

The new logic can be constructed as an extension to
the Boolean logic: operators (defined by their “truth
table”, seeAppendix A.1) can be defined and imple-
mented. As shown in tables with shaded background,
the two-valued Boolean logic is included as a subset
of the newly introduced three-valued logic: this sub-
set of truth tables is exactly equivalent to truth ta-
bles for two-valued logic. The “promotion” operation
(mixing three-valued and two-valued logical variables)
is also possible: operations between two-valued and

three-valued Boolean values can be interpreted; their
result is as shown in the table inAppendix A.

2.2. Introducing objects

For a complex task such as implementing an ex-
pert system, using Object Oriented Programming
(OOP) seems to be a necessity. For non-programmers,
the term “object” sounds rather mystic. Probably
the best way to understand the term is via the
“Disney-metaphor”, as shown inFig. 3. According to
this, the “cleaning objects”, which usually comprise
only data, such as volume, length, weight, etc., are
personalized and can also perform actions such as fill,
wipe, clean, etc. In this way,how the action is car-
ried out remains hidden; the “wizard” asks for some
action (what) and the “cleaning objects” carry it out.
The unnecessary details (how) areencapsulatedinto
the objects, allowing for a better review of the task.

New objects can be derived from an object; the new
object inherits all features and data from itsancestor
and makes something more (what) or the same thing
in a different way (how). For a more detailed (and
professionally correct) discussion, please refer to the
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Fig. 3. The ‘Disney metaphor’ for objects.

numerous textbooks on object-oriented programming,
for example[7].

2.3. The ‘generic rule’

The ‘rules’ can be represented in a convenient way
as objects; some of the important data and function
names are shown inAppendix A.2.1. The data of
the objects are a three-valued logical value and text
strings; furthermore the methods are functions (com-
prising operators, logical functions and other compu-
tational methods). These rules have ‘their own’ value,
which is calculated from some other rules and/or from
some (properly communicated) external values. Since
the resulting rules are inherited from extended Boolean
logical functions, they are usable in rules as described
in Appendix A.2.2.

In most of the known “expert system shells” a spe-
cial language is constructed to describe the rules. In the
present system only one special method is used which
returns a rule. Otherwise, the language’s standard ele-
ments are used to combine the rules, to calculate, etc.
The present expert system is to be built into data han-
dling software, so it shall be somewhat simplified, but
still able to simulate a real domain expert. Since some
well defined, community verified rules are needed for
the intended application, it is an acceptable compro-
mise to omit the native language input and only use
the inferencing ability of the system.

The ‘inference engine’ functionality is hidden in
the operator functions that take logical variables or

rules as parameters and providegeneric rules as
results. In addition to performing the logical opera-
tion, these operator functions make “history notes”
about the actual state of the used arguments. When
asking for reasoning behind the resulting value, this
history string (preceded by the name and the actual
value of the rule) is returned. Although the built-in
“default reasoning” is appropriate for most purposes,
also “custom reasoning” is possible; when construct-
ing rules, users can follow their own method of
reasoning.

Note that two different evaluation modes can be set
for the rules. In the “complete” mode, all logical vari-
ables and functions comprising the rules are evaluated,
independently from the actual values the rules deliver;
in “shortcut” mode only those from which the result
of the rule can be clearly evaluated. For example, if
the rule is “Aand B”, and the value of A isfalse, the
result of the logical expression will befalse, indepen-
dently of the value of B. Because of this, in shortcut
mode B will not be evaluated at all. Since the variables
and functions that are not actually used for calculat-
ing the value of a rule, are redundant, omitting them
makes the evaluation shorter and quicker as well as
the reasoning cleaner. Because of this, the “shortcut”
mode is selected as default.

2.4. Combining rules

Although rules are expressions, resulting in a logical
value, any kind of operation can be used. In this way,
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different kinds of combined rules can be constructed.
In the examples below, meta-language expressions are
shown.

In the case of a sub-range type rule, it is possible
to provide alternative rules for the same goal, i.e. the
sub-rules reply to the same question, but they are able
to deliver this reply under slightly different conditions.
The range of the comprised individual rules is limited,
but the resulting rule covers the full range, thanks to
the appropriate combination.

xrIsInRange(ThresholdLow,
ThresholdHigh) =
{ xrIsInSubRange1(ThresholdLow,
Val1)
OR
. . .

xrIsInSubRangeN(Val2,
ThresholdHigh)

}

i.e. the sub-rules have a range of validity, and they
“fire” only in case the conditions lie in their partic-
ular range of validity, otherwise reply with “I do not
know”, thus allowing other sub-rules to decide. The
rule then can be a simple “OR” of these functions. An-
other example is the “Multiple condition” rule, used
by Castle and Baker[1].

xrMultipleCondition(ThresholdLow,
ThresholdHigh) =
{ Percent = 0;

if(Condition1 is True) Percent
= Percent + Percent1;

. . .

if(ConditionN is True) Percent
= Percent + PercentN;

if(Percent<ThresholdLow)
return False;

else if(Percent>ThresholdHigh)
return True;

else return Unknown;
}

Here, the different conditions contribute different
amounts of certainty to decide the value of the rule.
Finally the contributions are summed up. The rule re-
sults inFalse if the sum is below the lower threshold
value, True if above the upper threshold value, and
Unknown between them.

Note: If the result is “not True” then this is not the
same as “False”!

Any other combination of rules can be easily as-
sembled. Presently, the base system contains only
pre-defined combination of rules (i.e. is hard-wired),
which corresponds to the expert-proven rules sets.

3. Domain-specific rules

The functionality of the “generic rule” object pro-
vides a simple “inference engine” that needs “expert
rules” as fuel. From the generic rules,domain-specific
rules(for example generally valid in the field of XPS)
can be derived. Based on these rules, more specific
expert rules can be constructed.

3.1. How to code rules

The base packet (the inference engine) offers a
rather complete functionality, so when making new
rules, only the name of the new rule (“Name”) and
the method which calculates the value of the rule
(“Fires”) shall be provided, the rest will be done by
the inherited functionality. A simple example is the
rule, which results in the information if the binding
energy is available.

In some cases the spectrum data points are recorded
on a binding energy scale, in some cases on a kinetic
energy scale and in some cases the scale type is not
recorded at all in the data file. It might also happen that
although the scale type and energy values are known,
the value of the excitation energy is not recorded in
the data file. (Of course, the experimenter knows it,
but the embedded expert system cannot consult him.)
In the case one needs an energy data on the binding
energy scale, one has to know if it is available. In
everyday language:

Binding energy is available
if

energy data are on binding energy scale
or
energy data are on kinetic energy scale

and
excitation energy is known.

Using the present system, the only special method
that shall be written for coding this rule is the ‘Fire’
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method. The meta-language formulation of the rule is
presented inSection 3.4, while the complete, working
code (in C++) for this rule is shown inAppendix
A.2.2.

As it is seen, it is quite straightforward to trans-
late the everyday terminology to logical expression;
the brackets in this particular case are not really nec-
essary (the precedence of the operators would result
in the same execution order without brackets, too),
they just emphasize how exactly the expression is
meant. The resulting rule is completely specified: now
(thanks to the underlying object’s functionality) the
“CalculateValue” member function can calculate
the resulting value (whether one can use the binding
energy scale) and the method “GetReasoning” can
tell the reason to the user.

Depending on the actual values of the statuses used
for evaluating the rule, the “Fire” function delivers
the correct value for the rule and the ‘reasoning’ func-
tion will result in text something like:

“Binding energy known” is TRUE
because

“Energy-Data are BE” is TRUE

or

“Binding energy known” is TRUE
because

(“Energy-Data are KE” is TRUE

AND
“Exciting energy known” is TRUE)

or

“Binding energy known” is FALSE
because

(“Energy-Data are BE” is FALSE

OR
“Energy-Data are KE” is FALSE)

or

“Binding energy known” is UNKNOWN
because

(“Energy-Data are BE” is FALSE

OR
(“Energy-Data are KE” is TRUE

AND
“Exciting energy known” is UNKNOWN))

Again, these “reasons” are from the working code,
in the default “shortcut” evaluation mode. In the
“complete” evaluation mode, the first example sounds:

“Binding energy known” is TRUE
because

(“Energy-Data are BE” is TRUE

OR
(“Energy-Data are KE” is FALSE

AND
“Exciting energy known” is UNKNOWN))

As it is seen, the information content is identical
but the output is more verbose. In the shortcut mode
it is simpler to understand the reasoning of the rule.

3.2. Using external information

Unlike the example above, which uses other rules
to calculate the value of the rule, most rules need data
from some external information source like databases,
data-evaluation program, spectrum-attached informa-
tion, user, etc. The base package defines the generic
objectxpInfoSource for this purpose, and all the
real information source objects are derived from it. The
external values are asked from some external informa-
tion sources (like measured and model spectrum, ex-
ternal database, user, etc.), which are interchangeable,
provided that they can answer the question. The ques-
tions can be about the spectrum, components, sample,
spectrometer, measurement conditions, etc.

Certain spectrum data formats (see for example[8])
can contain information on whether the energy points
are given on the kinetic or binding energy scale. In
such cases the spectrum object (see next section) can
provide this kind of information; in other cases the
user (also a source of information!) shall be asked.
For example, thexpSpectrumBase object (which is
able to tell how the spectrum data point energy data are
interpreted) can be used as shown inAppendix A.2.3.

3.3. Using data-evaluation information

Since the goal of the package is to respond to re-
quests from the data-evaluation and data-acquisition
software, the method of interaction with them shall
also be elaborated. Here the method used specif-
ically to communicate with the wxEWA spectrum
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evaluation software[9] is presented. However, it is not
too much difference whether the active peak object
replies (i.e. an Object Oriented Programming (OOP)
implementation is used) to a question about the peak

energy or the data-evaluation software reads out some
value of the corresponding array and assembles the
reply the rule needs.

It is possible to define a consequent and fully
OOP-based model for spectrum evaluation, see[10].
In this scheme, the central object is the “computed
spectrum” (seeFig. 2), which contains a list of com-
ponents (background and peaks) and references to ob-
jects “measured spectrum”, “sample”, “spectrometer”,
etc. The figure is actually an (incomplete) object in-
terworking diagram for the wxEWA program, but it
also illustrates the advantages of the object-oriented
design.

One has to teachonly the “Spectrum component”
object to answer the question “Are your energy-related
parameters given on the binding energy scale?” and
all peaks and backgrounds will inherit this ability. It
is enough to implement the “GetPeakEnergy” method
in “peak component” and all derived peaks will do it
in the same way. This feature can be advantageously
used when it is asked if there is a peak with a given
energy in the spectrum. The “Computed spectrum”
object using its “HasPeakInRegion(EnergyLow,
EnergyHigh)” method can ask all “Peak objects”,
stored in its internal list, and they can reply with a re-
sult using the “IsAt(energy)” method. These methods
can even actually be invoked in a rule, so that part of
the platform-specific rules can be built into spectrum
evaluation objects.

3.4. Some general rules

For completeness, the already mentioned rule (“is
the binding energy available”) given as an example is
presented here using the meta-language syntax. Here
and below in the rule names, “BE” stands for “Binding

energy” and similarly “KE ” for kinetic energy. Also,
since these rules involving these types of energy are
completely analogous, in the followings only the “BE”
version is listed, but also the “KE ” version exists in
the implementation.

IsEnergyKnownBE(Spectrum) = IsEnergyKnownKE(Spectrum) =
{ IsEnergyBE(Spectrum) { IsEnergyKE(Spectrum)

|| IsEnergyKE(Spectrum) || IsEnergyBE(Spectrum)

&& &&
IsXEnergyKnown(Spectrum) IsXEnergyKnown(Spectrum)

} }
A helpful rule could be whether the energy region in
question is measured completely:

IsRegionMeasuredBE(Spectrum, BE1,
BE2) =
{ IsEnergyKnownBE(Spectrum)

&&
IsInRangeBE(Spectrum.Measured
LowBE,Spectrum.MeasuredHighBE,
BE1)

&&
IsInRangeBE(Spectrum.Measured
LowBE, Spectrum.MeasuredHighBE,
BE2)

}

(to decide if a peak energy falls in a certain range,
one has to make the evaluation operations in a some-
what wider range, for example, to determine the back-
ground).

Also a frequently used rule is whether an energy
value falls in some range:

IsInRangeBE(BE1, BE2, EnergyBE) =
{ EnergyBE > BE1

&&
EnergyBE < BE2

}

Since the peaks are objects and they can tell their
energy, the rule if a peak has its energy in some range
has the form:

IsInRangeBE(Peak, BE1, BE2) =
{ Peak.EnergyBE > BE1

&&
Peak.EnergyBE < BE2

}
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In the spectrum there is generally more than one
peak, so a rule advising if there is a peak in a given
energy range of the spectrum is also useful:

HasPeakInRangeBE(Spectrum, BE1, BE2) =
{ IsInRangeBE(BE1, BE2,
Spectrum.Peak1) // For all peaks

||
IsInRangeBE(BE1, BE2,
Spectrum.PeakN)

}

4. Expert rules: the ‘Carbon contamination’
rule set

As shown inSection 2, the presented ‘inference
engine’ is able to provide the functionality required
in everyday data-evaluation practice. As an example
for practical applicability, this section describes how
the “rule set for carbon contamination” (see[1]) can
be implemented using the proposed base package and
the domain-specific rules set.

4.1. Is carbon 1s peak present?

The criterion if the C 1s peak is present in the spec-
trum at all, is

HasCarbon1sPeak (Spectrum) =
{ IsRegionMeasuredBE(Spectrum,

282-2, 462+2) //Region measured,
BE available

&&
IsRegionMeasuredKE(Spectrum,

269-2, 275+2) //Region measured,
KE available

&&
HasPeakInRangeBE(Spectrum, 282,

288) //C 1s present
&&
HasPeakInRangeKE(Spectrum, 269,

275) //KLL Auger present
&&
! HasPeakInRangeBE(Spectrum, 458,

462) //Ruthenium absent

}

In the rule above some energy values are represented
in form of “x+/−y”, where “x” is one of the limiting
values of the range a characteristic peak shall be found
in, and “y” is the amount of extension necessary for
evaluating the peak in that energy range safely, see
Section 3.4. In the rule above 2 eV value is used. Note
that here it seems unnecessary to verify if the region
containing the C 1s peak is measured at all and if
the given energy values are accessible. And really,
they could be verified in the lower-level rules, too. In
the latter case, however, they will be executed more
than once, so that the performance decreases and the
length of reasoning string increases. The inclusion or
exclusion of such questions is a matter of strategy and
should be debated.

4.2. Is the surface carbon contaminated?

In case C 1s is present in the measured spectrum,
one has to verify if the sample contains carbon. So the
rule for determining if the sample is carbon contami-
nated, might be

IsCarbonContaminated(Spectrum) =
{ (NOT IsCarbonInSample(Spectrum)

AND
HasCarbon1sPeak(Spectrum)
)
OR
HasCarbonContamination(Spectrum)

}

The information whether the sample contains car-
bon can be taken from the sample information for a
particular spectrum:

IsCarbonInSample(Spectrum) =
{ IsCarbonContained

(Spectrum.Sample)
}

The second half of the rule is a composite rule.
Neither of the sub-rules alone is decisive, but they all
increase by some amount the chance that the sample
is carbon contaminated. The sum then can be below
a lower or above an upper threshold, or even between
them. The rule then “fires” correspondingly.

HasCarbonContamination(Spectrum) =
{ x = 0
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if IsEnergySeparationInRange
(ESLow, ESHigh) x = x + 15

if HasCarbon1sPeak(Spectrum) x= x
+ 20

if IsShirleyParameterAbove
Threshold(Spectrum.PeakC1s) x
= x + 25

if IsCarbonSlopeGreater
(Spectrum) x = x + 25

. . .

False if x < 20
True if x > 70
else Unknown

}

4.3. Need for supporting evaluation procedures

Unfortunately, the embedded character rises new
problems. Namely, one needs development of new
automatic data-evaluation procedures. The two yet
unknown comprised rules in rule HasCarbonContam-
ination(Spectrum) above, can be easily expanded:

ShirleyParameterAbove
(Spectrum.Peak1s,ShirleyThreshold)
=
{ GetShirleyParameter

(Spectrum.Peak1s)
> ShirleyThreshold
}

CarbonSlopeGreater(Spectrum) =
{ GetSlopeValue(Spectrum.Peak1) >
GetSlopeValue(Spectrum.Peak1s)

&&
. . .

GetSlopeValue(Spectrum.PeakN) >
GetSlopeValue(Spectrum.Peak1s)

}

These new rules have a common characteristic:
they need a data-evaluation parameter, belonging
to the individual (photo)peaks, that can be evalu-
ated in a non-interactive way. Most data-evaluation
methods use the Shirley background as an integral
prodecure (valid for the whole spectrum, rather than
characteristic of individual peaks) method. Although
there exists an interpretation[11] that allows attach-

ing the Shirley-contribution as a tail to the peaks,
its use is not typical in widely used data-evaluation
software.

A similar situation exists with the ‘SlopeValue’ pa-
rameter[12]. This again, needs to be defined for each
peak, and its use limited to the vicinity of the peak. In
addition, the slope parameter can be highly correlated
with the slopes of other nearby peaks.

Today, the Tougaard-type background evaluation
[13] is the physically most correct method for back-
ground subtraction. Unfortunately, it is an integral
method and is not able to deliver per peak informa-
tion, like post-peak slope or Shirley height, needed in
the “Carbon contamination” rules. Since there exists
a possibility[14] to derive a peak tail, equivalent to
the Tougaard background, there is hope that similar
information from this physically correct model can be
derived in the future, too. Otherwise, one would have
the options of either to use a “correct” method in the
data-evaluation process (with no chance to use the ex-
pert system) or to use an “incorrect” data-evaluation
method with the expert system.

The lack of any human intelligence in the auto-
mated process also raises problems. For example, to
decide which peak is the C 1s peak, one needs addi-
tional support. The rule ‘HasCarbon1sPeak’ only de-
clares its existence, but does not give support for the
case if more than one peak is present in the energy
range, characteristic of the C 1s peak; similarly prob-
lematic is when an energy correction is necessary for
charging.

In general, the present approach needs well-
established, stable, consistent, automated data-eval-
uation methods. Either these methods shall be given
on an algorithmic level (i.e. the missing methods shall
be elaborated) or some other methods shall be used
instead in the rules. The methods in their present
form assume the assistance of an expert person,
who will not be generally available in an automated,
“embedded” expert system any more.

It should be noted that a different approach to the
evaluation of acquired data will be needed for different
types of problems. For example, several ranges and/or
several energy regions taken at different angles may
need to be analyzed simultaneously. Since different
rules might be based on different data-evaluation pro-
cedures, multi-method data-evaluation programs have
to be developed.
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5. Using the rules

The described base system provides a facility to
build an XPS/AES specific expert system, but the task
to provide domain-specific rules remains for the user
community. To develop such a community-verified
rule set, some tools are necessary. Since the suc-
cess/failure of a rule depends both on the correctness
of the rule and the parameters used (which are pro-
vided by the data-acquisition/evaluation software,
database handler, etc.) it is a good idea to separate
a possible data mistake from a mistake in the rule’s
logic.

One possible way to reach this goal is provided
in the sample program with the package[3]. In this
sample, the rules take their input from the elements
(checkboxes, text fields, etc.) of a graphical user inter-
face. This method allows one to test the ‘net’ rules, be-
cause these input parameters are completely separated
from the rules and are under the user’s control. For
example, the peak information can be set in a graphic
interface page, as shown inFig. 4. The rules can be
verified individually, either as simple or as combined

Fig. 4. Simulating C 1s peak parameters for the carbon contamination rule.

rules. The provided sample application allows one to
test the domain-specific general rules (also part of the
package), as well as the rules implemented as pro-
posed by Castle and Baker[1]. As a different kind of
function of an expert system, it demonstrates how the
measurement time can be optimized using the princi-
ples suggested by Harrison and Hazell[15].

6. Using wizards

Many experts (see, for example[16]) prefer the
wizard style for making logical conclusions and rea-
soning with the expert system. From the user’s point
of view, wizards are a safe way to reach some goal,
without the need to know many details. From the
programmer’s point of view, the wizards are special-
ized and directed dialogs. As they are defined in the
multi-platform package[17] wxWindows:

These dialogs are mostly familiar to Windows users
and are nothing else but a sequence of ‘pages’ each
of them displayed inside a dialog which has buttons
to pass to the next (and previous) pages. The wizards
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are typically used to decompose a complex dialog
into several simple steps and are mainly useful to
the novice users; hence it is important to keep them
as simple as possible.

As follows immediately from this definition, using
wizards or proceeding without wizards is just a tech-
nical question in general and a matter of taste. In the
present package (and sample application) both styles
can be selected. In addition to using the rules directly
as discussed in the previous section, the wizards di-
rect the user to establish the necessary conditions,
ask for the requested piece of information, and even
force some method of usage via temporary disabling of
some operations, making some routes one-way only,
etc. For an example seeFig. 5.

The main difference between using wizards and us-
ing the rules directly is that the wizard “knows” the
necessary conditions as well as the ways they can be
established and directs/forces the user to follow the
necessary steps. When applying the rules directly, the

Fig. 5. A wizard page, forcing a user to follow the path.

user has to figure out what is still missing from reason-
ing he receives from the system. That is, using wizards
is a “hard-wired” way of receiving a reply from the
inference engine. With a wizard either all phases are
passed (during which the needed replies/information
pieces are delivered and the logical parameters of the
rules established) resulting in some conclusion or the
wizard is cancelled, delivering no reply at all. With-
out a wizard, the user has to know (or can conclude
from the reasoning of the conclusion of the unsuccess-
ful trial) which conditions are necessary for the rule
to deliver the reply he wants.

In any case,the logic behind the scenes remains the
same. Although it is probably easier for a beginner to
use a wizard, the user will find much slower to reach
the goal with wizards than with using the rules directly.
Growing familiarity with the rules and conditions will
enable a user to proceed at a faster rate.

Also note some important differences. When using
wizards, the user is the medium that gives the replies
needed by the engine of the expert system. Because
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of this, wizards have some important disadvantages:

• The user’s intelligence has to be involved in the
decision process.

• The process cannot be automated.
• The user will be the only information source.
• The result will contain some subjective elements

(replies).
• Allows ‘improvisation’.

On the other hand, wizards have some advantages:

• No direct integration with the acquisition/evaluation
software is necessary.

• The user’s intelligence can be involved in the deci-
sion process.

• Any kind of input information can be used.
• Allows ‘improvisation’.

The sample application offers both methods, indi-
cating thatthe more important point is the rule and
the logical interrelations between various parameters.
The method by which this information is communi-
cated to the inference engine is of secondary impor-
tance. The user might reach his goal safely using wiz-
ards (and even might learn the ‘how’s and ‘why’s),
or might directly use the various rules, using the suc-
cess/failure method.

7. Summary

A new approach for implementing “expert
system-like functionality” in data-acquisition and
data-evaluation software is proposed. A “reasoning
inference engine” is implemented in the described
base package, available for free through the Internet
[3] for various platforms. The completeness of the
package is demonstrated through implementation of
the complete ‘Carbon contamination’ rule set[1]. A
simple demonstration program is also available[3],
which allows verifying the behavior of the “carbon
rule” under different conditions. Using the base pack-
age, it is possible to build similar rules and to verify
them with applications similar to the demonstration
application. The task remaining isto extract addi-
tional rules from existing experience, to allow their
verification by the XPS community and to build them
into future acquisition/evaluation software.
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Appendix A

The appendix comprises implementation-related
material and is included for the interested reader. It
serves mainly as an illustration; the previous material
shall be understood without reading it. However, it
has close connections to the discussed material and
people interested in details of implementation might
find it interesting.

A.1. Triple-valued logic ‘truth tables’

Possible value range: (Unknown),

A.2. Examples of rules

The examples below are taken from the actual work-
ing program example. The examples are coded in pro-
gram language C++, because it allows both using ob-
jects (for the rules) and “operator overloading”, which
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allows using an elegant syntax, quite similar to a natu-
ral language. For building a Graphic User Interface for
the program, the wxWindows multiplatform package
is used[17]. Implementation (maybe in less elegant
form) is also possible in other program languages. For
better readability, the implementation-specific types,
headings, comments, documentation, irrelevant parts,
etc. have been removed.

A.2.1. ‘Generic’ rule
The generic rule contains the following data:

HistoryString; // here is the
execution history
string stored

Name; // the name of the rule
InfoSource; // pointer to the

info source
value; // rules saved value

And methods

// constructors & destructor
AddStringToHistory : //contribute to

history string
GetValue : //return the

stored logical
value

CalculateValue : //calculate the
logical value
anew using
‘‘Fire’’

Fire : //return the
resulting rule

GetHistoryString : //return the
history while
calculating
the value

GetName : //return the
name of
the rule

GetReasoning : //return the
rule’s
history in
reasoning form

GetValueString : //return the
rule’ s value
in string form

SetShortcutMode : //set ‘shortcut’
or ‘complete’
evaluation mode

= //(assign) operator
! //(negation)

operator
&& //(logical AND)

operator
|| //(logical OR)

operator

The operators work according to the truth table in
Appendix A.1.

A.2.2. The ‘Is the binding energy known’ rule
Actually, the rule used as an example inSection 3.1

can be programmed as simply as this

class xrIsEnergyKnownBE :
public xpRuleXPS
{ public:

xrIsEnergyKnownBE( xpInfoSource
*MyInformator=NULL)

:xpRuleXPS(MyInformator)
{Name= “Binding energy known”;
}

xpRuleGeneric Fire(void)
{ return xrIsEnergyBE

(InfoSource)
OR
(xrIsEnergyKE

(InfoSource)
AND
xrIsXEnergyKnown

(InfoSource)
);

}
};// of xrIsEnergyKnownBE

The code above is the real, working code for that
rule! Of course, the called rules shall be programmed
separately, but simply in a similar fashion.

A.2.3. The ‘Are the energy data given on kinetic
energy scale’ rule

This rule is an example for the case when some
external information source is used to assemble the
value. In this particular case the “spectrum” is di-
rectly asked, but for example a “user” object can also
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be asked, supposing that he can answer the question
‘IsEnergyKE’.

class xrIsEnergyKE : public xpRuleXPS
{ public:

xrIsEnergyKE( xpInfoSource *MyInformator=NULL)
:xpRuleXPS(MyInformator)
{ Name = “Energy-Data are KE”;}
xpRuleGeneric Fire(void)
{ xpSpectrumBase *xpS= (xpSpectrumBase *) InfoSource;

if(xpS)
{ if (xboolean::True== xpS->GetEnergyBE())

value= xboolean::False;
else if(xboolean::False= = xpS->GetEnergyBE())

value= xboolean::True;
else value = Unknown;

}
else

value = Unknown;
if(xboolean::True == value)

HistoryString<< “Energy data are on kinetic scale”;
else if (xboolean::False== value)

HistoryString<< “Energy data are NOT on kinetic scale”;
else HistoryString <<

“No spectrum or energy not known”;
return *this;

}
};// of xrIsEnergyKE

A.3. A sample ‘Spectrum” external object

class xpSpectrumBase : public xpSpectrumObjectGeneric
{ protected:

wxList PeakList; //Peaks attached to the spectrum
float EnergySeparation; //
public:

xpSpectrumBase(void)
{ };
xpSpectrumBase(const xpSpectrumBase& S)
{ EnergySeparation= S.EnergySeparation;}
wxList* GetPeaks(void)

{ return &PeakList;}
float GetEnergySeparation(void)
{ return EnergySeparation;}
void SetEnergySeparation(float ES)
{ EnergySeparation = ES;}

};//xpSpectrumBase
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